We study the asymptotic stability of densities for piecewise convex maps with flat bottoms or a neutral fixed point. Our main result is an improvement of Lasota and Yorke's result ([5], Theorem 4).
@article{bwmeta1.element.bwnjournal-article-apmv57z1p83bwm, author = {Tomoki Inoue}, title = {Asymptotic stability of densities for piecewise convex maps}, journal = {Annales Polonici Mathematici}, volume = {57}, year = {1992}, pages = {83-90}, zbl = {0761.28011}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv57z1p83bwm} }
Tomoki Inoue. Asymptotic stability of densities for piecewise convex maps. Annales Polonici Mathematici, Tome 57 (1992) pp. 83-90. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv57z1p83bwm/
[000] [1] M. Benedicks and M. Misiurewicz, Absolutely continuous invariant measures for maps with flat tops, Publ. Math. IHES 69 (1989), 203-213. | Zbl 0703.58030
[001] [2] T. Inoue, Weakly attracting repellors for piecewise convex maps, preprint. | Zbl 0772.58036
[002] [3] T. Inoue and H. Ishitani, Asymptotic periodicity of densities and ergodic properties for nonsingular systems, Hiroshima Math. J. 21 (1991), 597-620. | Zbl 0755.28007
[003] [4] A. Lasota and M. C. Mackey, Probabilistic Properties of Deterministic Systems, Cambridge University Press, 1984. | Zbl 0606.58002
[004] [5] A. Lasota and J. A. Yorke, Exact dynamical systems and the Frobenius-Perron operator, Trans. Amer. Math. Soc. 273 (1982), 375-384. | Zbl 0524.28021
[005] [6] G. Pianigiani, First return map and invariant measures, Israel J. Math. 35 (1980), 32-48. | Zbl 0445.28016
[006] [7] V. A. Rokhlin, Exact endomorphisms of a Lebesgue space, Amer. Math. Soc. Transl. Ser. (2) 39 (1964), 1-36. | Zbl 0154.15703