A differential equation of the form (q(t)k(u)u')' = λf(t)h(u)u' depending on the positive parameter λ is considered and nonnegative solutions u such that u(0) = 0, u(t) > 0 for t > 0 are studied. Some theorems about the existence, uniqueness and boundedness of solutions are given.
@article{bwmeta1.element.bwnjournal-article-apmv57z1p71bwm, author = {S. Stan\v ek}, title = {Nonnegative solutions of a class of second order nonlinear differential equations}, journal = {Annales Polonici Mathematici}, volume = {57}, year = {1992}, pages = {71-82}, zbl = {0774.34017}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv57z1p71bwm} }
S. Staněk. Nonnegative solutions of a class of second order nonlinear differential equations. Annales Polonici Mathematici, Tome 57 (1992) pp. 71-82. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv57z1p71bwm/
[00000] [1] F. V. Atkinson and L. A. Peletier, Similarity profiles of flows through porous media, Arch. Rational Mech. Anal. 42 (1971), 369-379. | Zbl 0249.35043
[00001] [2] F. V. Atkinson and L. A. Peletier, Similarity solutions of the nonlinear diffusion equation, ibid. 54 (1974), 373- 392. | Zbl 0293.35039
[00002] [3] J. Bear, D. Zaslavsky and S. Irmay, Physical Principles of Water Percolation and Seepage, UNESCO, 1968.
[00003] [4] J. Goncerzewicz, H. Marcinkowska, W. Okrasiński and K. Tabisz, On the percolation of water from a cylindrical reservoir into the surrounding soil, Zastos. Mat. 16 (1978), 249-261. | Zbl 0403.76078
[00004] [5] W. Okrasiński, Integral equations methods in the theory of the water percolation, in: Mathematical Methods in Fluid Mechanics, Proc. Conf. Oberwolfach 1981, Band 24, P. Lang, Frankfurt am Main 1982, 167-176.
[00005] [6] W. Okrasiński, On a nonlinear ordinary differential equation, Ann. Polon. Math. 49 (1989), 237-245. | Zbl 0685.34038