We study the asymptotic behaviour of the semigroup of Markov operators generated by the equation . We prove that for a > 1 this semigroup is asymptotically stable. We show that for a ≤ 1 this semigroup, properly normalized, converges to a limit which depends only on a.
@article{bwmeta1.element.bwnjournal-article-apmv57z1p45bwm, author = {Ryszard Rudnicki}, title = {Asymptotic behaviour of a transport equation}, journal = {Annales Polonici Mathematici}, volume = {57}, year = {1992}, pages = {45-55}, zbl = {0758.45009}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv57z1p45bwm} }
Ryszard Rudnicki. Asymptotic behaviour of a transport equation. Annales Polonici Mathematici, Tome 57 (1992) pp. 45-55. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv57z1p45bwm/
[000] [1] T. Dłotko and A. Lasota, Statistical stability and the lower bound function technique, in: Semigroups. Theory and Applications, Vol. I, H. Brezis, M. Crandall and F. Kappel (eds.), Longman Scientific & Technical, 1987, 75-95.
[001] [2] N. Dunford and J. T. Schwartz, Linear Operators, Part I, Interscience Publ., New York 1968. | Zbl 0128.34803
[002] [3] J. Klaczak, Stability of a transport equation, Ann. Polon. Math. 49 (1988), 69-80. | Zbl 0673.45009
[003] [4] A. Lasota and J. A. Yorke, Exact dynamical systems and the Frobenius-Perron operator, Trans. Amer. Math. Soc. 273 (1982), 375-384. | Zbl 0524.28021
[004] [5] K. Łoskot, Stochastic perturbations of dynamical systems, Ann. Polon. Math., to appear. | Zbl 0876.60050
[005] [6] A. Rényi, Probability Theory, Akadémiai Kiadó, Budapest 1970.
[006] [7] A. N. Shiryaev, Probability, Nauka, Moscow 1989 (in Russian).