Generalized Schwarzian derivatives for generalized fractional linear transformations
John Ryan
Annales Polonici Mathematici, Tome 57 (1992), p. 29-44 / Harvested from The Polish Digital Mathematics Library

Generalizations of the classical Schwarzian derivative of complex analysis have been proposed by Osgood and Stowe [12, 13], Carne [5], and Ahlfors [3]. We present another generalization of the Schwarzian derivative over vector spaces.

Publié le : 1992-01-01
EUDML-ID : urn:eudml:doc:262343
@article{bwmeta1.element.bwnjournal-article-apmv57z1p29bwm,
     author = {John Ryan},
     title = {Generalized Schwarzian derivatives for generalized fractional linear transformations},
     journal = {Annales Polonici Mathematici},
     volume = {57},
     year = {1992},
     pages = {29-44},
     zbl = {0762.15013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv57z1p29bwm}
}
John Ryan. Generalized Schwarzian derivatives for generalized fractional linear transformations. Annales Polonici Mathematici, Tome 57 (1992) pp. 29-44. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv57z1p29bwm/

[000] [1] L. V. Ahlfors, Clifford numbers and Möbius transformations in n, in: Clifford Algebras and their Applications in Mathematical Phisics, J. S. R. Chrisholm and A. K. Common (eds.), NATO Adv. Study Inst. Ser., Ser. C: Math. Phys. Sci., Vol. 183, Reidel, 1986, 167-175.

[001] [2] L. V. Ahlfors, Möbius transformations in n expressed through 2 × 2 matrices of Clifford numbers, Complex Variables 5 (1986), 215-224.

[002] [3] L. V. Ahlfors, Cross-ratios and Schwarzian derivatives in n, preprint.

[003] [4] M. F. Atiyah, R. Bott and A. Shapiro, Clifford modules, Topology 3 (1964), 3-38.

[004] [5] K. Carne, The Schwarzian derivative for conformal maps, to appear. | Zbl 0705.30010

[005] [6] J. Elstrodt, F. Grunewald and J. Mennicke, Vahlen's group of Clifford matrices and Spin-groups, Math. Z. 196 (1987), 369-390. | Zbl 0611.20027

[006] [7] K. Gross and R. Kunze, Bessel functions and representation theory, II. Holomorphic discrete series and metaplectic representations, J. Funct. Anal. 25 (1977), 1-49. | Zbl 0361.22007

[007] [8] H. P. Jakobsen, Intertwining differential operators for Mp(n,ℝ) and U(n,n), Trans. Amer. Math. Soc. 246 (1978), 311-337.

[008] [9] H. P. Jakobsen and M. Vergne, Wave and Dirac operators and representations of the conformal group, J. Funct. Anal. 24 (1977), 52-106. | Zbl 0361.22012

[009] [10] O. Lehto, Univalent Functions and Teichmüller Spaces, Graduate Texts in Math. 109, Springer, 1986.

[010] [11] H. Maass, Automorphe Funktionen von mehreren Veränderlichen und Dirichletsche Reihen, Abh. Math. Sem. Univ. Hamburg 16 (1949), 72-100. | Zbl 0034.34801

[011] [12] P. Osgood and D. Stowe, The Schwarzian derivative and conformal mapping of Riemannian manifolds, to appear. | Zbl 0766.53034

[012] [13] P. Osgood and D. Stowe, A generalization of Nehari's univalence criterion, to appear. | Zbl 0722.53029

[013] [14] I. R. Porteous, Topological Geometry, Cambridge Univ. Press, 1981.

[014] [15] K. Th. Vahlen, Ueber Bewegungen und complexe Zahlen, Math. Ann. 55 (1902), 585-593.