We prove that under some assumptions a one-dimensional Itô equation has a strong solution concentrated on a finite spatial interval, and the pathwise uniqueness holds.
@article{bwmeta1.element.bwnjournal-article-apmv57z1p13bwm, author = {Anna Milian}, title = {On one-dimensional diffusion processes living in a bounded space interval}, journal = {Annales Polonici Mathematici}, volume = {57}, year = {1992}, pages = {13-19}, zbl = {0777.60057}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv57z1p13bwm} }
Anna Milian. On one-dimensional diffusion processes living in a bounded space interval. Annales Polonici Mathematici, Tome 57 (1992) pp. 13-19. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv57z1p13bwm/
[000] [1] S. N. Ethier and T. G. Kurtz, Markov Processes. Characterization and Convergence, Wiley, New York 1986. | Zbl 0592.60049
[001] [2] I. I. Gikhman and A. V. Skorokhod, Stochastic Differential Equations, Springer, Berlin 1972. | Zbl 0169.48702
[002] [3] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland, Amsterdam 1981. | Zbl 0495.60005