On one-dimensional diffusion processes living in a bounded space interval
Anna Milian
Annales Polonici Mathematici, Tome 57 (1992), p. 13-19 / Harvested from The Polish Digital Mathematics Library

We prove that under some assumptions a one-dimensional Itô equation has a strong solution concentrated on a finite spatial interval, and the pathwise uniqueness holds.

Publié le : 1992-01-01
EUDML-ID : urn:eudml:doc:262381
@article{bwmeta1.element.bwnjournal-article-apmv57z1p13bwm,
     author = {Anna Milian},
     title = {On one-dimensional diffusion processes living in a bounded space interval},
     journal = {Annales Polonici Mathematici},
     volume = {57},
     year = {1992},
     pages = {13-19},
     zbl = {0777.60057},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv57z1p13bwm}
}
Anna Milian. On one-dimensional diffusion processes living in a bounded space interval. Annales Polonici Mathematici, Tome 57 (1992) pp. 13-19. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv57z1p13bwm/

[000] [1] S. N. Ethier and T. G. Kurtz, Markov Processes. Characterization and Convergence, Wiley, New York 1986. | Zbl 0592.60049

[001] [2] I. I. Gikhman and A. V. Skorokhod, Stochastic Differential Equations, Springer, Berlin 1972. | Zbl 0169.48702

[002] [3] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland, Amsterdam 1981. | Zbl 0495.60005