Let E → W be an oriented vector bundle, and let X(E) denote the Euler number of E. The paper shows how to calculate X(E) in terms of equations which describe E and W.
@article{bwmeta1.element.bwnjournal-article-apmv56z3p295bwm,
author = {Zbigniew Szafraniec},
title = {On topological invariants of vector bundles},
journal = {Annales Polonici Mathematici},
volume = {57},
year = {1992},
pages = {295-301},
zbl = {0765.57020},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv56z3p295bwm}
}
Zbigniew Szafraniec. On topological invariants of vector bundles. Annales Polonici Mathematici, Tome 57 (1992) pp. 295-301. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv56z3p295bwm/
[000] [1] M. W. Hirsch, Differential Topology, Springer, New York 1976.
[001] [2] Z. Szafraniec, The Euler characteristic of algebraic complete intersections, J. Reine Angew. Math. 397 (1989), 194-201. | Zbl 0667.57010