Let E → W be an oriented vector bundle, and let X(E) denote the Euler number of E. The paper shows how to calculate X(E) in terms of equations which describe E and W.
@article{bwmeta1.element.bwnjournal-article-apmv56z3p295bwm, author = {Zbigniew Szafraniec}, title = {On topological invariants of vector bundles}, journal = {Annales Polonici Mathematici}, volume = {57}, year = {1992}, pages = {295-301}, zbl = {0765.57020}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv56z3p295bwm} }
Zbigniew Szafraniec. On topological invariants of vector bundles. Annales Polonici Mathematici, Tome 57 (1992) pp. 295-301. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv56z3p295bwm/
[000] [1] M. W. Hirsch, Differential Topology, Springer, New York 1976.
[001] [2] Z. Szafraniec, The Euler characteristic of algebraic complete intersections, J. Reine Angew. Math. 397 (1989), 194-201. | Zbl 0667.57010