Decomposition and disintegration of positive definite kernels on convex *-semigroups
Jan Stochel
Annales Polonici Mathematici, Tome 57 (1992), p. 243-294 / Harvested from The Polish Digital Mathematics Library

The paper deals with operator-valued positive definite kernels on a convex *-semigroup whose Kolmogorov-Aronszajn type factorizations induce *-semigroups of bounded shift operators. Any such kernel Φ has a canonical decomposition into a degenerate and a nondegenerate part. In case is commutative, Φ can be disintegrated with respect to some tight positive operator-valued measure defined on the characters of if and only if Φ is nondegenerate. It is proved that a representing measure of a positive definite holomorphic mapping on the open unit ball of a commutative Banach *-algebra is supported by the holomorphic characters of . A relationship between positive definiteness and complete positivity is established in the case of commutative W*-algebras.

Contents Introduction. 1. Preliminaries. 2. Predilatable kernels. 3. Criteria of predilatability. 4. Degenerate and nondegenerate predilatable kernels. 5. Canonical decomposition of predilatable kernels. 6. Weakly predilatable kernels. 7. Disintegration of nondegenerate predilatable kernels. 8. Continuity of predilatable mappings on topological *-algebras. 9. Disintegration of holomorphic positive definite mappings on commutative Banach *-algebras. 10. Holomorphic positive definite mappings on noncommutative Banach *-algebras. 11. Completely positive k-linear mappings. 12. Multiplicative k-homogeneous polynomials. 13. Positive definiteness versus complete positivity. 14. Appendix References.

Publié le : 1992-01-01
EUDML-ID : urn:eudml:doc:262273
@article{bwmeta1.element.bwnjournal-article-apmv56z3p243bwm,
     author = {Jan Stochel},
     title = {Decomposition and disintegration of positive definite kernels on convex *-semigroups},
     journal = {Annales Polonici Mathematici},
     volume = {57},
     year = {1992},
     pages = {243-294},
     zbl = {0788.47030},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv56z3p243bwm}
}
Jan Stochel. Decomposition and disintegration of positive definite kernels on convex *-semigroups. Annales Polonici Mathematici, Tome 57 (1992) pp. 243-294. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv56z3p243bwm/

[000] [1] T. Ando and M.-D. Choi, Non-linear completely positive maps, in: Aspects of Positivity in Functional Analysis, R. Nagel, U. Schlotterbeck and M. P. H. Wolff (eds.), Elsevier, North-Holland, 1986, 3-13.

[001] [2] W. B. Arveson, Subalgebras of C*-algebras, Acta Math. 123 (1969), 141-224.

[002] [3] H. Bauer, Darstellung von Bilinearformen auf Funktionenalgebren durch Integrale, Math. Z. 85 (1964), 107-115. | Zbl 0126.11905

[003] [4] S. K. Berberian, Notes on Spectral Theory, Van Nostrand, Princeton 1966. | Zbl 0138.39104

[004] [5] Ch. Berg, J. P. R. Christensen and P. Ressel, Harmonic Analysis on Semigroups, Springer, Berlin 1984.

[005] [6] Ch. Berg and P. H. Maserick, Exponentially bounded positive definite functions, Illinois J. Math. 28 (1984), 162-179. | Zbl 0519.43005

[006] [7] J. Bochnak and J. Siciak, Polynomials and multilinear mappings in topological vector spaces, Studia Math. 39 (1971), 59-76. | Zbl 0214.37702

[007] [8] J. Bochnak and J. Siciak, Analytic functions in topological vector spaces, Studia Math., 77-112. | Zbl 0214.37703

[008] [9] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, Berlin 1973. | Zbl 0271.46039

[009] [10] R. S. Bucy and G. Maltese, A representation theorem for positive functionals on involution algebras, Math. Ann. 162 (1966), 364-367. | Zbl 0132.10804

[010] [11] J. Burbea, Functional Banach spaces of holomorphic functions on Reinhardt domains, Ann. Polon. Math. 49 (1988), 179-208. | Zbl 0685.46011

[011] [12] S. B. Chae, Holomorphy and Calculus in Normed Spaces, M. Dekker, New York and Basel 1985. | Zbl 0571.46031

[012] [13] J. Dieudonné, Eléments d'analyse, Tome II, Gauthier-Villars, Paris 1974.

[013] [14] J. Dixmier, Les algèbres d'opérateurs dans l'espace hilbertien (algèbres de von Neumann), Gauthier-Villars, Paris 1969. | Zbl 0175.43801

[014] [15] R. S. Doran and J. Wichmann, Approximate Identities and Factorization in Banach Modules, Lecture Notes in Math. 768, Springer, Berlin 1979. | Zbl 0418.46039

[015] [16] L. Esterle, Mittag-Leffler methods in the theory of Banach algebras and a new approach to Michael's problem, in: Contemp. Math. 32, F. Greenleaf and D. Gulick (eds.), Amer. Math. Soc., Providence, R.I., 1984, 107-129. | Zbl 0569.46031

[016] [17] M. Fragoulopoulou, Abstract Bochner-Weil-Raikov theorem in topological algebras, Bull. Austral. Math. Soc. 26 (1982), 39-44. | Zbl 0512.46047

[017] [18] R. Godement, Sur la théorie des représentations unitaires, Ann. of Math. 53 (1951), 68-124. | Zbl 0042.34606

[018] [19] A. Guichardet, Symmetric Hilbert Spaces and Related Topics, Lecture Notes in Math. 261, Springer, Berlin 1972. | Zbl 0265.43008

[019] [20] T. Husain, Multiplicative Functionals on Topological Algebras, Res. Notes in Math. 85, Pitman, Boston 1983.

[020] [21] J. Kisyński, On the generation of tight measures, Studia Math. 30 (1968), 141-151. | Zbl 0157.37301

[021] [22] R. J. Lindahl and P. H. Maserick, Positive-definite functions on involution semigroups, Duke Math. J. 38 (1971), 771-782. | Zbl 0243.43004

[022] [23] P. Masani, Quasi-isometric measures and their applications, Bull. Amer. Math. Soc. 76 (1970), 427-528. | Zbl 0207.44001

[023] [24] P. Masani, Dilations as propagators of Hilbertian varieties, SIAM J. Math. Anal. 9 (1978), 414-456. | Zbl 0391.47005

[024] [25] P. Masani, An outline of the spectral theory of propagators, in: Functional Analysis and Approximation, Birkhäuser, Basel 1981, 73-84.

[025] [26] P. H. Maserick, Spectral theory of operator-valued transformations, J. Math. Anal. Appl. 41 (1973), 497-507. | Zbl 0252.47023

[026] [27] W. Mlak, Dilations of Hilbert space operators (General theory), Dissertationes Math. (Rozprawy Mat.) 153 (1978). | Zbl 0411.47004

[027] [28] A. E. Nussbaum, On the integral representation of positive linear functionals, Trans. Amer. Math. Soc. 128 (1967), 460-473. | Zbl 0153.44601

[028] [29] S. I. Ouzomgi, Factorization and automatic continuity for an algebra of infinitely differentiable functions, J. London Math. Soc. (2) 30 (1984), 265-280. | Zbl 0584.46037

[029] [30] S. I. Ouzomgi, Factorization and bounded approximate identities for a class of convolution Banach algebras, Glasgow Math. J. 28 (1986), 211-214. | Zbl 0605.46040

[030] [31] P. Ressel, Positive definite functions on abelian semigroups without zero, in: Studies in Analysis, Adv. in Math. Suppl. Stud. 4, Academic Press, New York 1979, 291-310.

[031] [32] P. Ressel, Integral representations on convex semigroups, Math. Scand. 61 (1987), 93-111. | Zbl 0659.43006

[032] [33] W. Rudin, Positive definite sequences and absolutely monotonic functions, Duke Math. J. 26 (1959), 617-622. | Zbl 0092.28302

[033] [34] W. Rudin, Functional Analysis, McGraw-Hill, New York 1973.

[034] [35] W. Rudin, Real and Complex Analysis, McGraw-Hill, New York 1974.

[035] [36] S. Sakai, A characterization of W*-algebras, Pacific J. Math. 6 (1956), 763-773. | Zbl 0072.12404

[036] [37] S. Sakai, C*-algebras and W*-algebras, Springer, Berlin 1971.

[037] [38] I. J. Schoenberg, Positive definite functions on spheres, Duke Math. J. 9 (1942), 96-108. | Zbl 0063.06808

[038] [39] Z. Sebestyén, On representability of linear functionals on *-algebras, Period. Math. Hungar. 15 (1984), 233-239.

[039] [40] Z. Sebestyén, Operator moment theorems for C*-algebras, Acta Math. Hungar. 49 (1987), 65-70. | Zbl 0634.47014

[040] [41] W. F. Stinespring, Positive functions on C*-algebras, Proc. Amer. Math. Soc. 6 (1955), 211-216.

[041] [42] J. Stochel, A note on general operator dilations over *-semigroups, Bull. Acad. Polon. Sci. Sér. Sci. Math. 28 (1980), 149-153. | Zbl 0473.47027

[042] [43] J. Stochel, Individual boundedness condition for positive definite sesquilinear form valued kernels, Studia Math. 74 (1982), 293-302. | Zbl 0506.47023

[043] [44] J. Stochel, The Bochner type theorem for *-definite kernels on abelian *-semi- groups without neutral element, in: Operator Theory: Adv. Appl. 11, Birkhäuser, Basel 1983, 345-362.

[044] [45] J. Stochel, On the Sz.-Nagy boundedness condition on non-abelian involutory semigroups, in: Operator Theory: Adv. Appl. 14, Birkhäuser, Basel 1984, 251-260.

[045] [46] J. Stochel, Decomposition and integral representation of covariance kernels, Bull. Acad. Polon. Sci. Sér. Sci. Math. 33 (1985), 367-376. | Zbl 0588.47046

[046] [47] J. Stochel, On the Sz.-Nagy boundedness condition on abelian involution semigroups, Colloq. Math. 54 (1987), 267-271. | Zbl 0675.47034

[047] [48] J. Stochel, The Fubini theorem for semi-spectral integrals and semi-spectral representations of some families of operators, Univ. Iagel. Acta Math. 26 (1987), 17-27. | Zbl 0641.46025

[048] [49] J. Stochel, Dilatability of sesquilinear form-valued kernels, Ann. Polon. Math. 48 (1988), 1-29. | Zbl 0655.47007

[049] [50] J. Stochel, Smooth positive definite functions on some multiplicative semigroups, Rend. Circ. Mat. Palermo 40 (1991), 153-176. | Zbl 0764.43002

[050] [51] J. Stochel and F. H. Szafraniec, Boundedness of linear and related nonlinear maps. II, Exposition. Math. 2 (1984), 283-287. | Zbl 0598.47071

[051] [52] F. H. Szafraniec, A general dilation theorem, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 25 (1977), 263-267.

[052] [53] F. H. Szafraniec, Dilations on involution semigroups, Proc. Amer. Math. Soc. 66 (1977), 30-32. | Zbl 0369.47004

[053] [54] F. H. Szafraniec, Apropos of Professor Masani's talk, in: Lecture Notes in Math. 656, Springer, Berlin 1978, 245-249.

[054] [55] F. H. Szafraniec, Boundedness of the shift operator related to positive definite forms: An application to moment problems, Ark. Mat. 19 (1981), 251-259. | Zbl 0504.47030

[055] [56] F. H. Szafraniec, Moments on compact sets, in: Prediction Theory and Harmonic Analysis, V. Mandrekar and H. Salehi (eds.), North-Holland, 1983, 379-385.

[056] [57] F. H. Szafraniec, The Hadamard product and related dilations, Colloq. Math. 48 (1984), 95-102. | Zbl 0571.47006

[057] [58] B. Sz.-Nagy, Extensions of linear transformations in Hilbert space which extend beyond this space, Appendix to: F. Riesz and B. Sz.-Nagy, Functional Analysis, Ungar, New York 1960.

[058] [59] D. M. Topping, Lectures on von Neumann Algebras, Van Nostrand Reinhold, London 1971.