A constant in pluripotential theory
Zbigniew Błocki
Annales Polonici Mathematici, Tome 57 (1992), p. 213-217 / Harvested from The Polish Digital Mathematics Library

We compute the constant sup (1/degP)(maxSlog|P|-Slog|P|dσ) : P a polynomial in n, where S denotes the euclidean unit sphere in n and σ its unitary surface measure.

Publié le : 1992-01-01
EUDML-ID : urn:eudml:doc:262432
@article{bwmeta1.element.bwnjournal-article-apmv56z2p213bwm,
     author = {Zbigniew B\l ocki},
     title = {A constant in pluripotential theory},
     journal = {Annales Polonici Mathematici},
     volume = {57},
     year = {1992},
     pages = {213-217},
     zbl = {0767.31007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv56z2p213bwm}
}
Zbigniew Błocki. A constant in pluripotential theory. Annales Polonici Mathematici, Tome 57 (1992) pp. 213-217. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv56z2p213bwm/

[00000] [1] H. Alexander, Projective capacity, in: Ann. of Math. Stud. 100, Princeton Univ. Press, 1981, 3-27.

[00001] [2] J.-P. Demailly, Potential theory in several complex variables, preprint, 1989.

[00002] [3] W. Rudin, Function Theory in the Unit Ball of n, Springer, 1980.

[00003] [4] J. Siciak, Extremal plurisubharmonic functions and capacities in n, Sophia Kokyuroku in Math. 14 (1982). | Zbl 0579.32025