We compute the constant sup : P a polynomial in , where S denotes the euclidean unit sphere in and σ its unitary surface measure.
@article{bwmeta1.element.bwnjournal-article-apmv56z2p213bwm, author = {Zbigniew B\l ocki}, title = {A constant in pluripotential theory}, journal = {Annales Polonici Mathematici}, volume = {57}, year = {1992}, pages = {213-217}, zbl = {0767.31007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv56z2p213bwm} }
Zbigniew Błocki. A constant in pluripotential theory. Annales Polonici Mathematici, Tome 57 (1992) pp. 213-217. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv56z2p213bwm/
[00000] [1] H. Alexander, Projective capacity, in: Ann. of Math. Stud. 100, Princeton Univ. Press, 1981, 3-27.
[00001] [2] J.-P. Demailly, Potential theory in several complex variables, preprint, 1989.
[00002] [3] W. Rudin, Function Theory in the Unit Ball of , Springer, 1980.
[00003] [4] J. Siciak, Extremal plurisubharmonic functions and capacities in , Sophia Kokyuroku in Math. 14 (1982). | Zbl 0579.32025