We study affine nondegenerate Blaschke hypersurfaces whose shape operators are parallel with respect to the induced Blaschke connections. We classify such surfaces and thus give an exact classification of extremal locally symmetric surfaces, first described by F. Dillen.
@article{bwmeta1.element.bwnjournal-article-apmv56z2p179bwm, author = {W\l odzimierz Jelonek}, title = {Affine surfaces with parallel shape operators}, journal = {Annales Polonici Mathematici}, volume = {57}, year = {1992}, pages = {179-186}, zbl = {0765.53007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv56z2p179bwm} }
Włodzimierz Jelonek. Affine surfaces with parallel shape operators. Annales Polonici Mathematici, Tome 57 (1992) pp. 179-186. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv56z2p179bwm/
[000] [1] F. Dillen, Locally symmetric complex affine hypersurfaces, J. Geom. 33 (1988), 27-38. | Zbl 0656.53012
[001] [2] F. Dillen, Equivalence theorems in affine differential geometry, Geom. Dedicata 32 (1989), 81-92. | Zbl 0684.53012
[002] [3] M. Magid and K. Nomizu, On affine surfaces whose cubic forms are parallel relative to the affine metric, Proc. Nat. Acad. Sci. U.S.A. 65 (1989), 215-218. | Zbl 0705.53010
[003] [4] K. Nomizu, On completeness in affine differential geometry, Geom. Dedicata 20 (1986), 43-49. | Zbl 0587.53010
[004] [5] K. Nomizu and U. Pinkall, On the geometry of affine immersions, Math. Z. 195 (1987), 165-178. | Zbl 0629.53012
[005] [6] K. Nomizu and U. Pinkall, Cayley surfaces in affine differential geometry, Tôhoku Math. J. 41 (1989), 589-596.