Let f(z) be a conformal mapping of an annulus A(R) = 1 < |z| < R and let f(A(R)) be a ring domain bounded by a circle and a k-circle. If R(φ) = w : arg w = φ, and l(φ) - 1 is the linear measure of f(A(R)) ∩ R(φ), then we determine the sharp lower bound of for fixed and .
@article{bwmeta1.element.bwnjournal-article-apmv56z2p157bwm, author = {Tetsuo Inoue}, title = {Radial segments and conformal mapping of an annulus onto domains bounded by a circle and a k-circle}, journal = {Annales Polonici Mathematici}, volume = {57}, year = {1992}, pages = {157-162}, zbl = {0759.30004}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv56z2p157bwm} }
Tetsuo Inoue. Radial segments and conformal mapping of an annulus onto domains bounded by a circle and a k-circle. Annales Polonici Mathematici, Tome 57 (1992) pp. 157-162. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv56z2p157bwm/
[000] [1] L. V. Ahlfors, Quasiconformal reflections, Acta Math. 109 (1963), 291-301. | Zbl 0121.06403
[001] [2] D. K. Blevins, Conformal mappings of domains bounded by quasiconformal circles, Duke Math. J. 40 (1973), 877-883. | Zbl 0275.30015
[002] [3] D. K. Blevins, Harmonic measure and domains bounded by quasiconformal circles, Proc. Amer. Math. Soc. 41 (1973), 559-564. | Zbl 0281.30015
[003] [4] D. K. Blevins, Covering theorems for univalent functions mapping onto domains bounded by quasiconformal circles, Canad. J. Math. 28 (1976), 627-631. | Zbl 0362.30013
[004] [5] W. K. Hayman, Multivalent Functions, Cambridge Univ. Press, 1958.
[005] [6] J. A. Jenkins, Some uniqueness results in the theory of symmetrization, Ann. of Math. 61 (1955), 106-115. | Zbl 0064.07501
[006] [7] O. Lehto and K. I. Virtanen, Quasiconformal Mappings in the Plane, second ed., Springer, 1973. | Zbl 0267.30016
[007] [8] I. P. Mityuk, Principle of symmetrization for the annulus and some of its applications, Sibirsk. Mat. Zh. 6 (1965), 1282-1291 (in Russian).