The fixed points of holomorphic maps on a convex domain
Do Duc Thai
Annales Polonici Mathematici, Tome 57 (1992), p. 143-148 / Harvested from The Polish Digital Mathematics Library

We give a simple proof of the result that if D is a (not necessarily bounded) hyperbolic convex domain in n then the set V of fixed points of a holomorphic map f:D → D is a connected complex submanifold of D; if V is not empty, V is a holomorphic retract of D. Moreover, we extend these results to the case of convex domains in a locally convex Hausdorff vector space.

Publié le : 1992-01-01
EUDML-ID : urn:eudml:doc:262465
@article{bwmeta1.element.bwnjournal-article-apmv56z2p143bwm,
     author = {Do Duc Thai},
     title = {The fixed points of holomorphic maps on a convex domain},
     journal = {Annales Polonici Mathematici},
     volume = {57},
     year = {1992},
     pages = {143-148},
     zbl = {0761.32012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv56z2p143bwm}
}
Do Duc Thai. The fixed points of holomorphic maps on a convex domain. Annales Polonici Mathematici, Tome 57 (1992) pp. 143-148. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv56z2p143bwm/

[000] [1] T. Barth, Taut and tight manifolds, Proc. Amer. Math. Soc. 24 (1970), 429-431. | Zbl 0191.09403

[001] [2] T. Barth, Convex domains and Kobayashi hyperbolicity, ibid. 79 (1980), 556-558. | Zbl 0438.32013

[002] [3] S. Dineen, R. Timoney et J.-P. Vigué, Pseudodistances invariantes sur les domaines d'un espace localement convexe, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 12 (1985), 515-529. | Zbl 0603.46052

[003] [4] R. E. Edwards, Functional Analysis, Holt, Rinehart and Winston, New York 1965. | Zbl 0182.16101

[004] [5] G. Fischer, Complex Analytic Geometry, Lecture Notes in Math. 538, Springer, 1976. | Zbl 0343.32002

[005] [6] T. Franzoni and E. Vesentini, Holomorphic Maps and Invariant Distances, North-Holland Math. Stud. 40, Amsterdam 1980. | Zbl 0447.46040

[006] [7] P. Kiernan, On the relations between taut, tight and hyperbolic manifolds, Bull. Amer. Math. Soc. 76 (1970), 49-51. | Zbl 0192.44103

[007] [8] J. L. Kelley, General Topology, Van Nostrand, New York 1957.

[008] [9] S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings, Dekker, New York 1970. | Zbl 0207.37902

[009] [10] L. Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France 109 (1981), 427-474.

[010] [11] L. Lempert, Holomorphic retracts and intrinsic metrics in convex domains, Anal. Math. 8 (1982), 257-261. | Zbl 0509.32015

[011] [12] H. L. Royden and P. Wong, Carathéodory and Kobayashi metrics on convex domains, to appear.

[012] [13] E. Vesentini, Complex geodesics, Compositio Math. 44 (1981), 375-394. | Zbl 0488.30015

[013] [14] E. Vesentini, Complex geodesics and holomorphic maps, in: Sympos. Math. 26, Inst. Naz. Alta Mat. Fr. Severi, 1982, 211-230. | Zbl 0506.32008

[014] [15] J.-P. Vigué, Points fixes d’applications holomorphes dans un domaine borné convexe de n, Trans. Amer. Math. Soc. 289 (1985), 345-353. | Zbl 0589.32043