We give a simple proof of the result that if D is a (not necessarily bounded) hyperbolic convex domain in then the set V of fixed points of a holomorphic map f:D → D is a connected complex submanifold of D; if V is not empty, V is a holomorphic retract of D. Moreover, we extend these results to the case of convex domains in a locally convex Hausdorff vector space.
@article{bwmeta1.element.bwnjournal-article-apmv56z2p143bwm, author = {Do Duc Thai}, title = {The fixed points of holomorphic maps on a convex domain}, journal = {Annales Polonici Mathematici}, volume = {57}, year = {1992}, pages = {143-148}, zbl = {0761.32012}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv56z2p143bwm} }
Do Duc Thai. The fixed points of holomorphic maps on a convex domain. Annales Polonici Mathematici, Tome 57 (1992) pp. 143-148. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv56z2p143bwm/
[000] [1] T. Barth, Taut and tight manifolds, Proc. Amer. Math. Soc. 24 (1970), 429-431. | Zbl 0191.09403
[001] [2] T. Barth, Convex domains and Kobayashi hyperbolicity, ibid. 79 (1980), 556-558. | Zbl 0438.32013
[002] [3] S. Dineen, R. Timoney et J.-P. Vigué, Pseudodistances invariantes sur les domaines d'un espace localement convexe, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 12 (1985), 515-529. | Zbl 0603.46052
[003] [4] R. E. Edwards, Functional Analysis, Holt, Rinehart and Winston, New York 1965. | Zbl 0182.16101
[004] [5] G. Fischer, Complex Analytic Geometry, Lecture Notes in Math. 538, Springer, 1976. | Zbl 0343.32002
[005] [6] T. Franzoni and E. Vesentini, Holomorphic Maps and Invariant Distances, North-Holland Math. Stud. 40, Amsterdam 1980. | Zbl 0447.46040
[006] [7] P. Kiernan, On the relations between taut, tight and hyperbolic manifolds, Bull. Amer. Math. Soc. 76 (1970), 49-51. | Zbl 0192.44103
[007] [8] J. L. Kelley, General Topology, Van Nostrand, New York 1957.
[008] [9] S. Kobayashi, Hyperbolic Manifolds and Holomorphic Mappings, Dekker, New York 1970. | Zbl 0207.37902
[009] [10] L. Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France 109 (1981), 427-474.
[010] [11] L. Lempert, Holomorphic retracts and intrinsic metrics in convex domains, Anal. Math. 8 (1982), 257-261. | Zbl 0509.32015
[011] [12] H. L. Royden and P. Wong, Carathéodory and Kobayashi metrics on convex domains, to appear.
[012] [13] E. Vesentini, Complex geodesics, Compositio Math. 44 (1981), 375-394. | Zbl 0488.30015
[013] [14] E. Vesentini, Complex geodesics and holomorphic maps, in: Sympos. Math. 26, Inst. Naz. Alta Mat. Fr. Severi, 1982, 211-230. | Zbl 0506.32008
[014] [15] J.-P. Vigué, Points fixes d’applications holomorphes dans un domaine borné convexe de , Trans. Amer. Math. Soc. 289 (1985), 345-353. | Zbl 0589.32043