An existence theorem for the cauchy problem (*) ẋ ∈ ext F(t,x), x(t₀) = x₀, in banach spaces is proved, under assumptions which exclude compactness. Moreover, a type of density of the solution set of (*) in the solution set of ẋ ∈ f(t,x), x(t₀) = x₀, is established. The results are obtained by using an improved version of the baire category method developed in [8]-[10].
@article{bwmeta1.element.bwnjournal-article-apmv56z2p133bwm, author = {F. S. De Blasi and G. Pianigiani}, title = {On the density of extremal solutions of differential inclusions}, journal = {Annales Polonici Mathematici}, volume = {57}, year = {1992}, pages = {133-142}, zbl = {0760.34019}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv56z2p133bwm} }
F. S. De Blasi; G. Pianigiani. On the density of extremal solutions of differential inclusions. Annales Polonici Mathematici, Tome 57 (1992) pp. 133-142. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv56z2p133bwm/
[000] [1] A. Antosiewicz and A. Cellina, Continuous selections and differential relations, J. Differential Equations 19 (1975), 386-398.
[001] [2] J. P. Aubin and A. Cellina, Differential Inclusions, Springer, Berlin 1984. | Zbl 0538.34007
[002] [3] S. Bahi, Quelques propriétés topologiques de l'ensemble des solutions d'une classe d'équations différentielles multivoques (II), Séminaire d'Analyse Convexe, Montpellier, 1983, exposé No. 4.
[003] [4] A. Bressan and G. Colombo, Generalized Baire category and differential inclusions in Banach spaces, J. Differential Equations 76 (1988), 135-158. | Zbl 0655.34013
[004] [5] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Math. 580, Springer, Berlin 1977.
[005] [6] G. Choquet, Lectures on Analysis, Benjamin, Reading 1969.
[006] [7] P. V. Chuong, Un résultat d'existence de solutions pour des équations différentielles multivoques, C. R. Acad. Sci. Paris 301 (1985), 399-402. | Zbl 0581.34012
[007] [8] F. S. De Blasi and G. Pianigiani, A Baire category approach to the existence of solutions of multivalued differential equations in Banach spaces, Funkcial. Ekvac. (2) 25 (1982), 153-162. | Zbl 0535.34009
[008] [9] F. S. De Blasi and G. Pianigiani, The Baire category method in existence problems for a class of multivalued differential equations with nonconvex right hand side, Funkcial. Ekvac. 28 (1985), 139-156. | Zbl 0584.34007
[009] [10] F. S. De Blasi and G. Pianigiani, Differential inclusions in Banach spaces, J. Differential Equations 66 (1987), 208-229. | Zbl 0609.34013
[010] [11] A. F. Filippov, The existence of solutions of generalized differential equations, Math. Notes 10 (1971), 608-611. | Zbl 0265.34074
[011] [12] A. N. Godunov, Peano's theorem in Banach spaces, Funktsional. Anal. i Prilozhen. 9 (1) (1974), 59-60 (in Russian).
[012] [13] H. Kaczyński and C. Olech, Existence of solutions of orientor fields with nonconvex right hand side, Ann. Polon. Math. 29 (1974), 61-66. | Zbl 0285.34008
[013] [14] N. S. Papageorgiou, On the solution set of differential inclusions in Banach spaces, Appl. Anal. 25 (1987), 319-329. | Zbl 0623.34062
[014] [15] N. S. Papageorgiou, On measurable multifunctions with applications to random multivalued equations, Math. Japon. 32 (1987), 437-464. | Zbl 0634.28005
[015] [16] G. Pianigiani, On the fundamental theory of multivalued differential equations, J. Differential Equations 25 (1977), 30-38. | Zbl 0398.34017
[016] [17] A. A. Tolstonogov, On differential inclusions in Banach spaces, Soviet Math. Dokl. 20 (1979), 186-190. | Zbl 0439.34052