The existence of bounded solutions for differential equations in Hilbert spaces
B. Przeradzki
Annales Polonici Mathematici, Tome 57 (1992), p. 103-121 / Harvested from The Polish Digital Mathematics Library

The existence of bounded solutions for equations x' = A(t)x + r(x,t) is proved, where the linear part is exponentially dichotomic and the nonlinear term r satisfies some weak conditions.

Publié le : 1992-01-01
EUDML-ID : urn:eudml:doc:262254
@article{bwmeta1.element.bwnjournal-article-apmv56z2p103bwm,
     author = {B. Przeradzki},
     title = {The existence of bounded solutions for differential equations in Hilbert spaces},
     journal = {Annales Polonici Mathematici},
     volume = {57},
     year = {1992},
     pages = {103-121},
     zbl = {0805.47041},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv56z2p103bwm}
}
B. Przeradzki. The existence of bounded solutions for differential equations in Hilbert spaces. Annales Polonici Mathematici, Tome 57 (1992) pp. 103-121. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv56z2p103bwm/

[000] [1] Yu. L. Daletskiĭ and M. G. Kreĭn, Stability of Solutions of Differential Equations in a Banach Space, Nauka, Moscow 1970 (in Russian).

[001] [2] K. Goebel and W. Rzymowski, An existence theorem for the equations x' = f(x,t) in Banach spaces, Bull. Acad. Polon. Sci. 18 (7) (1970), 367-370. | Zbl 0202.10003

[002] [3] K. Kuratowski, Sur les espaces complets, Fund. Math. 15 (1930), 301-309. | Zbl 56.1124.04

[003] [4] J. Massera and J. Schäffer, Linear Differential Equations and Function Spaces, Acad. Press, New York and London 1966. | Zbl 0243.34107

[004] [5] B. N. Sadovskiĭ, Ultimately compact and condensing operators, Uspekhi Mat. Nauk 27 (1) (1972), 82-146 (in Russian).

[005] [6] T. Ważewski, Sur la limitation des intégrales des systèmes d'équations différentielles linéaires ordinaires, Studia Math. 10 (1948), 48-59. | Zbl 0036.05703