We introduce a new class of normalized functions regular and univalent in the unit disk. These functions, called uniformly convex functions, are defined by a purely geometric property. We obtain a few theorems about this new class and we point out a number of open problems.
@article{bwmeta1.element.bwnjournal-article-apmv56z1p87bwm,
author = {A. W. Goodman},
title = {On uniformly convex functions},
journal = {Annales Polonici Mathematici},
volume = {55},
year = {1991},
pages = {87-92},
zbl = {0744.30010},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv56z1p87bwm}
}
A. W. Goodman. On uniformly convex functions. Annales Polonici Mathematici, Tome 55 (1991) pp. 87-92. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv56z1p87bwm/
[000] [1] A. W. Goodman, Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc. 8 (1957), 598-601. | Zbl 0166.33002
[001] [2] A. W. Goodman, Univalent Functions, Polygonal Publ. Co. Inc., Washington, N.J., 1983.
[002] [3] A. W. Goodman, On uniformly starlike functions, J. Math. Anal. Appl. 155 (1991), 364-370. | Zbl 0726.30013
[003] [4] W. Rudin, Function Theory in Polydiscs, Benjamin, New York 1969.