We determine all natural transformations T²₁T*→ T*T²₁ where . We also give a geometric characterization of the canonical isomorphism ψ₂ defined by Cantrijn et al.
@article{bwmeta1.element.bwnjournal-article-apmv56z1p67bwm, author = {Miroslav Doupovec}, title = {Natural transformations between T21T*M and T*T21M}, journal = {Annales Polonici Mathematici}, volume = {55}, year = {1991}, pages = {67-77}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv56z1p67bwm} }
Miroslav Doupovec. Natural transformations between T²₁T*M and T*T²₁M. Annales Polonici Mathematici, Tome 55 (1991) pp. 67-77. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv56z1p67bwm/
[000] [1] F. Cantrijn, M. Crampin, W. Sarlet and D. Saunders, The canonical isomorphism between and , C. R. Acad. Sci. Paris 309 (1989), 1509-1514. | Zbl 0702.58006
[001] [2] H. Gollek, Anwendungen der Jet-Theorie auf Faserbündel und Liesche Transformationsgruppen, Math. Nachr. 53 (1972), 161-180. | Zbl 0245.58002
[002] [3] J. Janyška, Geometrical properties of prolongation functors, Čas. Pěst. Mat. 110 (1985), 77-86. | Zbl 0582.58002
[003] [4] P. Kobak, Natural liftings of vector fields to tangent bundles of 1-forms, ibid., to appear. | Zbl 0743.53008
[004] [5] I. Kolář and Z. Radziszewski, Natural transformations of second tangent and cotangent functors, Czechoslovak Math. J. 38 (113) (1988), 274-279. | Zbl 0669.53023
[005] [6] I. Kolář, P. W. Michor and J. Slovák, Natural Operations in Differential Geometry, to appear. | Zbl 0782.53013
[006] [7] M. Modugno and G. Stefani, Some results on second tangent and cotangent spaces, Quaderni dell'Instituto di Matematica dell'Università di Lecce, Q. 16, 1978.
[007] [8] A. Nijenhuis, Natural bundles and their general properties, in: Differential Geometry in honor of Yano, Kinokuniya, Tokyo 1972, 317-334