This paper treats nonlinear elliptic boundary value problems of the form (1) L[u] = p(x,u) in , on ∂Ω in the Sobolev space , where L is any selfadjoint strongly elliptic linear differential operator of order 2m. Using both topological degree arguments and minimax methods we obtain existence and multiplicity results for the above problem.
@article{bwmeta1.element.bwnjournal-article-apmv56z1p49bwm, author = {Leszek G\k eba and Tadeusz Pruszko}, title = {Some applications of minimax and topological degree to the study of the Dirichlet problem for elliptic partial differential equations}, journal = {Annales Polonici Mathematici}, volume = {55}, year = {1991}, pages = {49-61}, zbl = {0763.35029}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv56z1p49bwm} }
Leszek Gęba; Tadeusz Pruszko. Some applications of minimax and topological degree to the study of the Dirichlet problem for elliptic partial differential equations. Annales Polonici Mathematici, Tome 55 (1991) pp. 49-61. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv56z1p49bwm/
[00000] [1] H. Amann and S. A. Weiss, On the uniqueness of the topological degree, Math. Z. 130 (1973), 39-54. | Zbl 0249.55004
[00001] [2] A. Ambrosetti and G. Mancini, Sharp nonuniqueness results for some nonlinear problems, Nonlinear Anal. 3 (1979), 635-645. | Zbl 0433.35025
[00002] [3] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349-381. | Zbl 0273.49063
[00003] [4] K.-C. Chang, Variational methods for non-differentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl. 80 (1981), 102-129. | Zbl 0487.49027
[00004] [5] A. Friedman, Partial Differential Equations, Holt, Rinehart and Winston, New York 1969. | Zbl 0224.35002
[00005] [6] L. Gå rding, Dirichlet's problem for linear elliptic partial differential equations, Math. Scand. 1 (1953), 55-72.
[00006] [7] E. M. Landesman and A. C. Lazer, Linear eigenvalues and a nonlinear boundary value problem, Pacific J. Math. 33 (1970), 311-328. | Zbl 0204.12002
[00007] [8] A. C. Lazer and P. J. McKenna, On the number of solutions of a nonlinear Dirichlet problem, J. Math. Anal. Appl. 84 (1981), 282-294. | Zbl 0496.35039
[00008] [9] L. Nirenberg, Topics in Nonlinear Functional Analysis, Courant Institute of Mathematical Sciences, New York University, 1974. | Zbl 0286.47037
[00009] [10] R. S. Palais and S. Smale, A generalized Morse theory, Bull. Amer. Math. Soc. 70 (1964), 165-171. | Zbl 0119.09201
[00010] [11] W. V. Petryshyn, Variational solvability of quasilinear elliptic boundary value problems at resonance, Nonlinear Anal. 5 (1981), 1095-1108. | Zbl 0477.35041
[00011] [12] P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conf. Ser. in Math. 65, Amer. Math. Soc., Providence, R.I., 1986.
[00012] [13] M. Struve, A note on a result of Ambrosetti and Mancini, Ann. Mat. Pura Appl. 131 (1982), 107-115.
[00013] [14] M. Vaĭnberg, On the continuity of some operators of special type, Dokl. Akad Nauk SSSR 73 (1950), 253-255 (in Russian) | Zbl 0039.33702