We prove that every injective endomorphism of an affine algebraic variety over an algebraically closed field of characteristic zero is an automorphism. We also construct an analytic curve in ℂ⁶ and its holomorphic bijection which is not a biholomorphism.
@article{bwmeta1.element.bwnjournal-article-apmv56z1p29bwm, author = {S\l awomir Cynk and Kamil Rusek}, title = {Injective endomorphisms of algebraic and analytic sets}, journal = {Annales Polonici Mathematici}, volume = {55}, year = {1991}, pages = {29-35}, zbl = {0761.14005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv56z1p29bwm} }
Sławomir Cynk; Kamil Rusek. Injective endomorphisms of algebraic and analytic sets. Annales Polonici Mathematici, Tome 55 (1991) pp. 29-35. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv56z1p29bwm/
[000] [1] J. Ax, A metamathematical approach to some problems in number theory,, in: Proc. Sympos. Pure Math. 20, Amer. Math. Soc., 1971, 161-190. | Zbl 0218.10075
[001] [2] A. Białynicki-Birula and M. Rosenlicht, Injective morphisms of real algebraic varieties, Proc. Amer. Math. Soc. 13 (1962), 200-203. | Zbl 0107.14602
[002] [3] A. Borel, Injective endomorphisms of algebraic varieties, preprint. | Zbl 0189.21402
[003] [4] J. Dieudonné, Cours de géométrie algébrique, Vol. II, Presses Univ. France, 1974.
[004] [5] A. Grothendieck, Eléments de géométrie algébrique. IV. Etude locale des schémas et des morphismes de schémas (quatrième partie), Inst. Hautes Etudes Sci. Publ. Math. 32 (1967). | Zbl 0153.22301
[005] [6] R. C. Gunning and H. Rossi, Analytic Functions of Several Complex Variables, Prentice-Hall, 1965. | Zbl 0141.08601
[006] [7] S. Łojasiewicz, An Introduction to Complex Analytic Geometry, PWN, Warszawa 1988 (in Polish). | Zbl 0773.32007
[007] [8] H. Matsumura and P. Monsky, On the automorphisms of hypersurfaces, J. Math. Kyoto Univ. 3 (3) (1964), 347-361. | Zbl 0141.37401
[008] [9] J.-P. Serre, Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier (Grenoble) 6 (1955-56), 1-42.