We construct a guided continuous selection for lsc multifunctions with decomposable values in L¹[0,T]. We then apply it to obtain a new result on the uniform approximation of relaxed solutions for lsc differential inclusions.
@article{bwmeta1.element.bwnjournal-article-apmv56z1p1bwm, author = {A. Ornelas}, title = {Approximation of relaxed solutions for lower semicontinuous differential inclusions}, journal = {Annales Polonici Mathematici}, volume = {55}, year = {1991}, pages = {1-10}, zbl = {0755.34015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv56z1p1bwm} }
A. Ornelas. Approximation of relaxed solutions for lower semicontinuous differential inclusions. Annales Polonici Mathematici, Tome 55 (1991) pp. 1-10. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv56z1p1bwm/
[000] [1] H. A. Antosiewicz and A. Cellina, Continuous selections and differential relations, J. Differential Equations 19 (1975), 386-398.
[001] [2] J. P. Aubin and A. Cellina, Differential Inclusions, Springer, New York 1984. | Zbl 0538.34007
[002] [3] A. Bressan, On differential relations with lower-continuous right-hand side, J. Differential Equations 37 (1980), 89-97. | Zbl 0418.34017
[003] [4] A. Bressan, On a bang-bang principle for non-linear systems, Boll. Un. Mat. Ital. Suppl. Anal. Funz. Appl. 1980, 55-59. | Zbl 0445.49012
[004] [5] A. Bressan and G. Colombo, Extensions and selections of maps with decomposable values, Studia Math. 90 (1988), 69-86. | Zbl 0677.54013
[005] [6] A. Cellina and M. V. Marchi, Non-convex perturbations of maximal monotone differential inclusions, Israel J. Math. 46 (1983), 1-11. | Zbl 0542.47036
[006] [7] G. Colombo, A. Fonda and A. Ornelas, Lower semicontinuous perturbations of maximal monotone differential inclusions, ibid. 61 (1988), 211-218. | Zbl 0661.47038
[007] [8] A. F. Filippov, Classical solutions of differential equations with multivalued right hand side, SIAM J. Control 5 (1967), 609-621.
[008] [9] A. Fryszkowski, Continuous selections for a class of non-convex multivalued maps, Studia Math. 76 (1983), 163-174. | Zbl 0534.28003
[009] [10] A. Fryszkowski, Continuous selections of Aumann integrals, J. Math. Anal. Appl., to appear. | Zbl 0704.28006
[010] [11] F. Hiai and H. Umegaki, Integrals, conditional expectations, and martingales of multivalued functions, J. Multivariate Anal. 7 (1977), 149-182. | Zbl 0368.60006
[011] [12] C. J. Himmelberg, Measurable relations, Fund. Math. 87 (1975), 53-72. | Zbl 0296.28003
[012] [13] S. Łojasiewicz jr., The existence of solutions for lower semicontinuous orientor fields, Bull. Acad. Polon. Sci. 28 (1980), 483-487. | Zbl 0483.49028
[013] [14] C. Olech, Decomposability as a substitute for convexity, in: Multifunctions and Integrands, G. Salinetti (ed.), Lecture Notes in Math. 1091, Springer, Berlin 1984, 193-205. | Zbl 0592.28008
[014] [15] A. Ornelas, Parametrization of Carathéodory multifunctions, preprint SISSA 51 M (1988).
[015] [16] G. Pianigiani, On the fundamental theory of multivalued differential equations, J. Differential Equations 25 (1977), 30-38. | Zbl 0398.34017
[016] [17] A. Pliś, Trajectories and quasitrajectories of an orientor field, Bull. Acad. Polon. Sci. 11 (1963), 369-370. | Zbl 0124.29404
[017] [18] A. A. Tolstonogov and I. A. Finogenko, On solutions of a differential inclusion with lower semicontinuous nonconvex right-hand side in a Banach space, Math. USSR-Sb. 53 (1986), 203-231. | Zbl 0588.34012
[018] [19] T. Ważewski, Sur une généralisation de la notion des solutions d'une équation au contingent, Bull. Acad. Pol. Sci. 10 (1962), 11-15. | Zbl 0104.30404