A geometric approach to the Jacobian Conjecture in ℂ²
Ludwik M. Drużkowski
Annales Polonici Mathematici, Tome 55 (1991), p. 95-101 / Harvested from The Polish Digital Mathematics Library

We consider polynomial mappings (f,g) of ℂ² with constant nontrivial jacobian. Using the Riemann-Hurwitz relation we prove among other things the following: If g - c (resp. f - c) has at most two branches at infinity for infinitely many numbers c or if f (resp. g) is proper on the level set g-1(0) (resp. f-1(0)), then (f,g) is bijective.

Publié le : 1991-01-01
EUDML-ID : urn:eudml:doc:262260
@article{bwmeta1.element.bwnjournal-article-apmv55z1p95bwm,
     author = {Ludwik M. Dru\.zkowski},
     title = {A geometric approach to the Jacobian Conjecture in $\mathbb{C}$$^2$},
     journal = {Annales Polonici Mathematici},
     volume = {55},
     year = {1991},
     pages = {95-101},
     zbl = {0772.14006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv55z1p95bwm}
}
Ludwik M. Drużkowski. A geometric approach to the Jacobian Conjecture in ℂ². Annales Polonici Mathematici, Tome 55 (1991) pp. 95-101. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv55z1p95bwm/

[000] [1] S. S. Abhyankar, Expansion Techniques in Algebraic Geometry, Tata Inst. Fund. Research, Bombay 1977. | Zbl 0818.14001

[001] [2] S. S. Abhyankar and T. T. Moh, Embeddings of the line in the plane, J. Reine Angew. Math. 276 (1975), 149-166. | Zbl 0332.14004

[002] [3] H. Appelgate and H. Onishi, The Jacobian Conjecture in two variables, J. Pure Appl. Algebra 37 (1985), 215-227. | Zbl 0571.13005

[003] [4] H. Bass, E. H. Connell and D. Wright, The Jacobian Conjecture: reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc. 7 (2) (1982), 287-330. | Zbl 0539.13012

[004] [5] A. Białynicki-Birula and M. Rosenlicht, Injective morphisms of real algebraic varieties, Proc. Amer. Math. Soc. 13 (1962), 200-203. | Zbl 0107.14602

[005] [6] S. A. Broughton, Milnor numbers and the topology of polynomial hypersurfaces, Invent. Math. 92 (1988), 217-241. | Zbl 0658.32005

[006] [7] J. Chądzyński and T. Krasiński, Properness and the Jacobian Conjecture in ℂ², to appear. | Zbl 0887.32008

[007] [8] R. Ephraim, Special polars and curves with one place at infinity, in: Proc. Sympos. Pure Math. 40, Vol. I, Amer. Math. Soc., 1983, 353-360. | Zbl 0537.14020

[008] [9] H. Farkas and I. Kra, Riemann Surfaces, Springer, 1980.

[009] [10] M. Furushima, Finite groups of polynomial automorphisms in the complex affine plane, Mem. Fac. Sci. Kyushu Univ. Ser. A 36 (1) (1982), 85-105. | Zbl 0547.32015

[010] [11] O.-H. Keller, Ganze Cremona-Transformationen, Monatsh. Math. Phys. 47 (1939), 299-306.

[011] [12] S. Łojasiewicz, Introduction to Complex Analytic Geometry, Birkhäuser, to appear. | Zbl 0773.32007

[012] [13] T. T. Moh, On analytic irreducibility at ∞ of a pencil of curves, Proc. Amer. Math. Soc. 44 (1974), 22-24. | Zbl 0309.14011

[013] [14] T. T. Moh, On the Jacobian Conjecture and the configuration of roots, J. Reine Angew. Math. 340 (1983), 140-212. | Zbl 0525.13011

[014] [15] D. Mumford, Introduction to Algebraic Geometry, Springer, 1976. | Zbl 0356.14002

[015] [16] Y. Nakai and K. Baba, A generalization of Magnus theorem, Osaka J. Math. 14 (1977), 403-409. | Zbl 0373.12010

[016] [17] A Nowicki, On the Jacobian Conjecture in two variables, J. Pure Appl. Algebra 50 (1988), 195-207. | Zbl 0642.13015

[017] [18] K. Rusek and T. Winiarski, Criteria for regularity of holomorphic mappings, Bull. Acad. Polon. Sci. 28 (9-10) (1980), 471-475. | Zbl 0507.14003

[018] [19] K. Rusek and T. Winiarski, Polynomial automorphisms of n, Univ. Iagel. Acta Math. 24 (1984), 143-149.