Let E₀, E₁ be two subsets of the closure D̅ of a domain D of the Euclidean n-space and Γ(E₀,E₁,D) the family of arcs joining E₀ to E₁ in D. We establish new cases of equality , where is the p-module of the arc family Γ(E₀,E₁,D), while is the p-capacity of E₀,E₁ relative to D and p > 1. One of these cases is when p = n, E̅₀ ∩ E̅₁ = ∅, , is inaccessible from D by rectifiable arcs, is open relative to D̅ or to the boundary ∂D of D, is at most countable, is closed (i = 0,1) and D is bounded and m-smooth on (F₀ ∪ F₁) ∩ ∂D.
@article{bwmeta1.element.bwnjournal-article-apmv55z1p37bwm, author = {Petru Caraman}, title = {New cases of equality between p-module and p-capacity}, journal = {Annales Polonici Mathematici}, volume = {55}, year = {1991}, pages = {37-56}, zbl = {0748.31003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv55z1p37bwm} }
Petru Caraman. New cases of equality between p-module and p-capacity. Annales Polonici Mathematici, Tome 55 (1991) pp. 37-56. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv55z1p37bwm/
[000] [1] P. P. Caraman, p-Capacity and p-modulus, Symposia Math. 18 (1976), 455-484.
[001] [2] P. P. Caraman, About equality between the p-module and the p-capacity in , in: Analytic Functions, Proc. Conf. Błażejewko 1982, Lecture Notes in Math. 1039, Springer, Berlin 1983, 32-83.
[002] [3] P. P. Caraman, p-module and p-capacity of a topological cylinder, Rev. Roumaine Math. Pures Appl. (1991) (in print).
[003] [4] P. P. Caraman, p-module and p-capacity in , Rev. Roumaine Math. Pures Appl. (in print).
[004] [5] B. Fuglede, Extremal length and functional completion, Acta Math. 98 (1957), 171-219. | Zbl 0079.27703
[005] [6] J. Hesse, Modulus and capacity, Ph.D. Thesis, Univ. of Michigan, Ann Arbor, Michigan, 1972.
[006] [7] J. Hesse, A p-extremal length and p-capacity equality, Ark. Mat. 13 (1975), 131-144. | Zbl 0302.31009
[007] [8] J. Väisälä, On quasiconformal mappings in space, Ann. Acad. Sci. Fenn. Ser. AI Math. 298 (1961), 1-36. | Zbl 0096.27506
[008] [9] W. Ziemer, Extremal length and conformal capacity, Trans. Amer. Math. Soc. 126 (1967), 460-473. | Zbl 0177.34002
[009] [10] W. Ziemer, Extremal length and p-capacity, Michigan Math. J. 16 (1969), 43-51.