We define some new classes of univalent functions. The Schiffer differential equations are obtained for extremal functions from some of these classes.
@article{bwmeta1.element.bwnjournal-article-apmv55z1p349bwm, author = {Kajetan Tochowicz}, title = {The classes of univalent functions connected with homographies}, journal = {Annales Polonici Mathematici}, volume = {55}, year = {1991}, pages = {349-355}, zbl = {0771.30023}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv55z1p349bwm} }
Kajetan Tochowicz. The classes of univalent functions connected with homographies. Annales Polonici Mathematici, Tome 55 (1991) pp. 349-355. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv55z1p349bwm/
[000] [1] J. A. Hummel and M. M. Schiffer, Variational methods for Bieberbach-Eilenberg functions and for pairs, Ann. Acad. Sci. Fenn. Ser. AI Math. 3 (1977), 3-52. | Zbl 0379.30011
[001] [2] I. Kra, Automorphic Forms and Kleinian Groups, Benjamin, Reading, Mass., 1972. | Zbl 0253.30015
[002] [3] J. Krzyż and J. Ławrynowicz, Elements of Complex Analysis, WNT, Warszawa 1981 (in Polish). | Zbl 0516.30002
[003] [4] H. L. Royden, The coefficient problems for bounded schlicht functions, Proc. Nat. Acad. Sci. U.S.A. 11 (1949), 657-662. | Zbl 0041.40802
[004] [5] S. Saks and A. Zygmund, Analytic Functions, PWN, Warszawa 1953.
[005] [6] A. C. Schaeffer and D. C. Spencer, Coefficient Regions for Schlicht Functions, Amer. Math. Soc., New York 1950. | Zbl 0049.06003