We are concerned with the set of all growth exponents of regular functions on an algebraic subset V of . We show that its elements form an increasing sequence of rational numbers and we study the dependence of its structure on the geometric properties of V.
@article{bwmeta1.element.bwnjournal-article-apmv55z1p331bwm, author = {A. Strzebo\'nski}, title = {The growth of regular functions on algebraic sets}, journal = {Annales Polonici Mathematici}, volume = {55}, year = {1991}, pages = {331-341}, zbl = {0755.32022}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv55z1p331bwm} }
A. Strzeboński. The growth of regular functions on algebraic sets. Annales Polonici Mathematici, Tome 55 (1991) pp. 331-341. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv55z1p331bwm/
[000] [1] R. Draper, Intersection theory in algebraic geometry, Math. Ann. 180 (1969), 1975-2040.
[001] [2] S. Łojasiewicz, Introduction to Complex Analytic Geometry, Birkhäuser, to appear in 1991.
[002] [3] D. Mumford, Algebraic Geometry, Vol. 1, Complex Projective Varieties, Springer, Berlin 1976.
[003] [4] P. Tworzewski and T. Winiarski, Analytic sets with proper projections, J. Reine Angew. Math. 337 (1982), 68-76. | Zbl 0497.32024
[004] [5] T. Winiarski, Continuity of total number of intersection, Ann. Polon. Math. 47 (1986), 155-178. | Zbl 0638.32011