The growth of regular functions on algebraic sets
A. Strzeboński
Annales Polonici Mathematici, Tome 55 (1991), p. 331-341 / Harvested from The Polish Digital Mathematics Library

We are concerned with the set of all growth exponents of regular functions on an algebraic subset V of n. We show that its elements form an increasing sequence of rational numbers and we study the dependence of its structure on the geometric properties of V.

Publié le : 1991-01-01
EUDML-ID : urn:eudml:doc:262520
@article{bwmeta1.element.bwnjournal-article-apmv55z1p331bwm,
     author = {A. Strzebo\'nski},
     title = {The growth of regular functions on algebraic sets},
     journal = {Annales Polonici Mathematici},
     volume = {55},
     year = {1991},
     pages = {331-341},
     zbl = {0755.32022},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv55z1p331bwm}
}
A. Strzeboński. The growth of regular functions on algebraic sets. Annales Polonici Mathematici, Tome 55 (1991) pp. 331-341. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv55z1p331bwm/

[000] [1] R. Draper, Intersection theory in algebraic geometry, Math. Ann. 180 (1969), 1975-2040.

[001] [2] S. Łojasiewicz, Introduction to Complex Analytic Geometry, Birkhäuser, to appear in 1991.

[002] [3] D. Mumford, Algebraic Geometry, Vol. 1, Complex Projective Varieties, Springer, Berlin 1976.

[003] [4] P. Tworzewski and T. Winiarski, Analytic sets with proper projections, J. Reine Angew. Math. 337 (1982), 68-76. | Zbl 0497.32024

[004] [5] T. Winiarski, Continuity of total number of intersection, Ann. Polon. Math. 47 (1986), 155-178. | Zbl 0638.32011