Continuous transformation groups on spaces
K. Spallek
Annales Polonici Mathematici, Tome 55 (1991), p. 301-320 / Harvested from The Polish Digital Mathematics Library

A differentiable group is a group in the category of (reduced and nonreduced) differentiable spaces. Special cases are the rationals ℚ, Lie groups, formal groups over ℝ or ℂ; in general there is some mixture of those types, the general structure, however, is not yet completely determined. The following gives as a corollary a first essential answer. It is shown, more generally,that a locally compact topological transformation group, operating effectively on a differentiable space X (which satisfies some mild geometric property) is in fact a Lie group and operates differentiably on X. Special cases have already been known: X a manifold (Montgomery-Zippin), X a reduced (Kerner) or nonreduced (W. Kaup) complex space. The proof requires some analysis on arbitrary differentiable spaces. There one has for example in general no finitely generated ideals as in the case of complex spaces. As a corollary one obtains: The reduction of a locally compact differentiable group is a Lie group (by different methods also proved by Pasternak-Winiarski). It was already proved before that any differentiable group can be uniquely extended to a smallest locally compact differentiable group (as a dense subgroup). The study of the nonreduced parts of differentiable groups remains to be completed.

Publié le : 1991-01-01
EUDML-ID : urn:eudml:doc:262429
@article{bwmeta1.element.bwnjournal-article-apmv55z1p301bwm,
     author = {K. Spallek},
     title = {Continuous transformation groups on spaces},
     journal = {Annales Polonici Mathematici},
     volume = {55},
     year = {1991},
     pages = {301-320},
     zbl = {0787.32030},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv55z1p301bwm}
}
K. Spallek. Continuous transformation groups on spaces. Annales Polonici Mathematici, Tome 55 (1991) pp. 301-320. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv55z1p301bwm/

[000] [1] N. Aronszajn, Subcartesian and subriemannian spaces. Notices Amer. Math. Soc. 14, (1967), 111.

[001] [2] N. Aronszajn and P. Szeptycki, Subcartesian spaces, J. Differential Geom. 15 (1980), 393-416.

[002] [3] H. Behnke, K. Spallek et al., Zur lokalen Theorie in der Funktionentheorie mehrerer komplexer Veränderlicher; in particular K. Spallek, Differenzierbare Räume, in: Forschungsergebnisse aus dem 1. Math. Inst. der Univ. Münster, Westdeutscher Verlag, Köln und Opladen 1966.

[003] [4] R. Bekemeier, Holmann-Blätterungen im differenzierbaren Fall (auf differenzierbaren Räumen), Diplomarbeit, Universität Bochum, 1988.

[004] [5] A. Breuer and C. D. Marshall, Banachian differentiable spaces, Math. Ann. 237 (1978), 105-120. | Zbl 0366.58001

[005] [6] D. Gottowik, Zweiter Tangentialraum und kovariante Ableitungen auf differenzierbaren Räumen, Diplomarbeit, Universität Bochum, 1987.

[006] [7] H. Grauert, Ein Theorem der analytischen Garbentheorie, Publ. Math. 5 (1960), 232-292. | Zbl 0100.08001

[007] [8] T. Husain, Introduction to Topological Groups, Saunders 1966. | Zbl 0136.29402

[008] [9] M. Jurchescu, Espaces mixtes, in: Lecture Notes in Math. 1014, Springer, 1983, 37-57.

[009] [10] W. Kaup, Infinitesimale Transformationsgruppen komplexer Räume, Math. Ann. 160 (1965), 72-92. | Zbl 0146.31102

[010] [11] H. Kerner, Über die Automorphismengruppe komplexer Räume, Arch. Math. (Basel) 11 (1960), 282-288. | Zbl 0112.31205

[011] [12] N. Kiesow, Einbettung von Räumen in Mannigfaltigkeiten minimaler Dimension, Dissertation, Universität Bochum, 1979.

[012] [13] A. Kowalczyk, Whitney's and Nash's embedding theorems for differential spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 28 (1980), 385-390. | Zbl 0494.58005

[013] [14] F. Leymann, Blätterungen von Räumen mit Singularitäten, Dissertation, Universität Bochum, 1987. | Zbl 0553.57010

[014] [15] C. D. Marshall, Calculus on subcartesian spaces, J. Differential Geom. 10 (1980), 551-573. | Zbl 0317.58007

[015] [16] H. Meier, Anwendungen der Theorie der lokal integrablen Vektorfelder auf Räumen mit Singularitäten, Dissertation, Universität Bochum, 1986.

[016] [17] D. Montgomery and L. Zippin, Topological Transformation Groups, Interscience Publ., 1966. | Zbl 0068.01904

[017] [18] D. Motreanu, Embeddings of C-subcartesian spaces, An. Ştiinţ. Univ. ’Al. I. Cuza’ Iaşi 25 (1979), 65-70.

[018] [19] Z. Pasternak-Winiarski, Group differential structures and their fundamental properties, thesis, Inst. Math., Techn. Univ. Warsaw, 1981 (in Polish).

[019] [20] Z. Pasternak-Winiarski, Differential groups of class D₀, Abh. Akad. Wiss. DDR, Abt. Math. Naturwiss. Technik 2N (1984), 173-176. | Zbl 0563.58005

[020] [21] Z. Pasternak-Winiarski, Differential groups of class D₀ and standard charts, Demonstratio Math. 16 (2) (1983), 503-517. | Zbl 0524.58005

[021] [22] K. Reichard, Quotienten differenzierbarer Räume nach eigentlich diskontinuierlichen Gruppen, Math. Z. (1976), 281-283. | Zbl 0338.32020

[022] [23] K. Reichard, Quotienten analytischer und differenzierbarer Räume nach Transformationsgruppen, Habilitation, Universität Bochum, 1978.

[023] [24] K. Reichard and K. Spallek, Productsingularities and quotients, in: Holomorphic Dynamics, Proc. Mexico, Lecture Notes in Math. 1345, Springer, 1986, 256-270.

[024] [25] U. Schneider-Dunio, Stabilität transversal differenzierbarer Relationensysteme auf allgemeinen Räumen, Diplomarbeit, Universität Bochum, 1988.

[025] [26] R. Sikorski, Abstract covariant derivative, Colloq. Math. 18 (1967), 251-272. | Zbl 0162.25101

[026] [27] R. Sikorski, Differential modules, ibid. 24 (1971), 45-79. | Zbl 0226.53004

[027] [28] K. Spallek, Differenzierbare und holomorphe Funktionen auf analytischen Mengen, Math. Ann. 161 (1965), 143-162.

[028] [29] K. Spallek, Differenzierbare Räume, ibid. 180 (1969), 269-296.

[029] [30] K. Spallek, Glättung differenzierbarer Räume, ibid. 186 (1970), 233-248. | Zbl 0184.25001

[030] [31] K. Spallek, Differential forms on differentiable spaces, I, II, Rend. Mat. (2) 4 (1971), 231-258, and 5 (1972), 375-389.

[031] [32] K. Spallek, Beispiele zur lokalen Theorie der differenzierbaren Räume, Math. Ann. 195 (1972), 332-347. | Zbl 0217.49501

[032] [33] K. Spallek, Zur Klassifikation differenzierbarer Gruppen, Manuscripta Math. 11 (1974), 345-357. | Zbl 0301.22015

[033] [34] K. Spallek, Geometrische Bedingungen für die Integrabilität von Vektorfeldern auf Teilmengen des n, ibid. 25 (1978), 147-160. | Zbl 0391.32004

[034] [35] K. Spallek, Foliations on singularities, in: Complex Analysis and Applications, Proc. Varna 1985, Bulgar. Acad. Sci., Sofia 1986, 643-657.

[035] [36] K. Spallek, Differentiable groups and Whitney spaces, Serdica 16 (1990), 166-175. | Zbl 0717.58004

[036] [37] K. Spallek, Fortsetzung von Blätterungen und Integration beliebiger Verteilungen, in: Complex Analysis, Seventh Romannian-Finnish Seminar, Bucarest 1989, Rev. Roumaine Math. Pures Appl. (1991/92), to appear.

[037] [38] P. Szeptycki, Vector bundles on subcartesian spaces, Ann. Polon. Math. 42 (1983), 350-368. | Zbl 0531.58007

[038] [39] P. Szeptycki, Subcartesian spaces, preprint, 1980.

[039] [40] M. Teufel, Differenzierbare Strukturen und Jetbündel auf Räumen mit Singularitäten, Dissertation, Universität Bochum, 1979.

[040] [41] F. Treves, Topological Vector Spaces, Distributions and Kernels, Academic Press, 1967.

[041] [42] H. Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc. 36 (1934), 63-89. | Zbl 0008.24902

[042] [43] H. Whitney, On ideals of differentiable functions, Amer. J. Math. 70 (1948), 635-658. | Zbl 0037.35502

[043] [44] W. Sasin and K. Spallek, Gluing of differentiable spaces and applications, Math. Ann. (1991), to appear. | Zbl 0735.32020