On the dependence of the Bergman function on deformations of the Hartogs domain
Zbigniew Pasternak-Winiarski
Annales Polonici Mathematici, Tome 55 (1991), p. 287-300 / Harvested from The Polish Digital Mathematics Library

We apply the Rudin idea to represent the Bergman kernel of the Hartogs domain as the sum of a series of weighted Bergman functions in the study of the dependence of this kernel on deformations of the domain. We prove that the Bergman function depends smoothly on the function defining the Hartogs domain.

Publié le : 1991-01-01
EUDML-ID : urn:eudml:doc:262271
@article{bwmeta1.element.bwnjournal-article-apmv55z1p287bwm,
     author = {Zbigniew Pasternak-Winiarski},
     title = {On the dependence of the Bergman function on deformations of the Hartogs domain},
     journal = {Annales Polonici Mathematici},
     volume = {55},
     year = {1991},
     pages = {287-300},
     zbl = {0755.32019},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv55z1p287bwm}
}
Zbigniew Pasternak-Winiarski. On the dependence of the Bergman function on deformations of the Hartogs domain. Annales Polonici Mathematici, Tome 55 (1991) pp. 287-300. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv55z1p287bwm/

[000] [1] J. Burbea and P. Masani, Banach and Hilbert Spaces of Vector-Valued Functions, Res. Notes Math. 90, Pitman, Boston 1984. | Zbl 0555.46012

[001] [2] F. Forelli and W. Rudin, Projections on spaces of holomorphic functions in balls, Indiana Univ. Math. J. 24 (1974), 593-602. | Zbl 0297.47041

[002] [3] R. E. Greene and S. G. Krantz, Stability of the Bergman kernel and curvature properties of bounded domains, in: Recent Developments in Several Complex Variables, J. Fornaess (ed.), Ann. of Math. Stud. 100, Princeton Univ. Press, Princeton, N.J., 1981. | Zbl 0483.32014

[003] [4] R. E. Greene and S. G. Krantz, Deformation of complex structures, estimates for the ∂̅ equation, and stability of the Bergman kernel, Adv. in Math. 43 (1982), 1-86. | Zbl 0504.32016

[004] [5] S. G. Krantz, Function Theory of Several Complex Variables, Interscience-Wiley, New York 1982. | Zbl 0471.32008

[005] [6] E. Ligocka, The regularity of the weighted Bergman projection, in: Seminar of Deformation Theory 1982/84, Lecture Notes in Math. 1165, Springer, 1985, 197-203.

[006] [7] E. Ligocka, On the Forelli-Rudin construction and weighted Bergman projections, Studia Math. 94 (1989), 257-272. | Zbl 0688.32020

[007] [8] K. Maurin, Analysis, Part 1, Elements, PWN-Reidel, Warszawa-Dordrecht 1976.

[008] [9] K. Maurin, Analysis, Part 2, Integration, Distributions, Holomorphic Functions, Tensor and Harmonic Analysis, PWN-Reidel, Warszawa-Dordrecht 1980.

[009] [10] T. Mazur, On the complex manifolds of Bergman type, to appear. | Zbl 1064.32500

[010] [11] Z. Pasternak-Winiarski, On the dependence of the reproducing kernel on the weight of integration, J. Funct. Anal. 94 (1990), 110-134. | Zbl 0739.46010

[011] [12] Z. Pasternak-Winiarski, On weights which admit the reproducing kernel of Bergman type, Internat. J. Math. and Math. Sci., to appear. | Zbl 0749.32019

[012] [13] W. Rudin, Function Theory in the Unit Ball in n, Springer, Berlin 1980. | Zbl 0495.32001

[013] [14] B. V. Shabat, Introduction to Complex Analysis, 3rd ed., Nauka, Moscow 1985 (in Russian). | Zbl 0574.30001