We provide a new division formula for holomorphic mappings. It is given in terms of residue currents and has the advantage of being more explicit and simpler to prove than the previously known formulas.
@article{bwmeta1.element.bwnjournal-article-apmv55z1p283bwm, author = {Mikael Passare}, title = {A new division formula for complete intersections}, journal = {Annales Polonici Mathematici}, volume = {55}, year = {1991}, pages = {283-286}, zbl = {0754.32005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv55z1p283bwm} }
Mikael Passare. A new division formula for complete intersections. Annales Polonici Mathematici, Tome 55 (1991) pp. 283-286. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv55z1p283bwm/
[000] [1] B. Berndtsson and M. Passare, Integral formulas and an explicit version of the fundamental principle, J. Funct. Anal. 84 (1989), 358-372. | Zbl 0686.46031
[001] [2] N. Coleff et M. Herrera, Les courants résiduels associés à une forme méromorphe, Lecture Notes in Math. 633, Springer, 1978. | Zbl 0371.32007
[002] [3] L. Hörmander, An Introduction to Complex Analysis in Several Variables, North-Holland, 1990. | Zbl 0685.32001
[003] [4] M. Passare, Residues, currents, and their relation to ideals of holomorphic functions, Math. Scand. 62 (1988), 75-152. | Zbl 0633.32005
[004] [5] M. Passare, A calculus for meromorphic currents, J. Reine Angew. Math. 392 (1988), 37-56. | Zbl 0645.32007