On roots of the automorphism group of a circular domain in n
Jan M. Myszewski
Annales Polonici Mathematici, Tome 55 (1991), p. 269-276 / Harvested from The Polish Digital Mathematics Library

We study the properties of the group Aut(D) of all biholomorphic transformations of a bounded circular domain D in n containing the origin. We characterize the set of all possible roots for the Lie algebra of Aut(D). There exists an n-element set P such that any root is of the form α or -α or α-β for suitable α,β ∈ P.

Publié le : 1991-01-01
EUDML-ID : urn:eudml:doc:262279
@article{bwmeta1.element.bwnjournal-article-apmv55z1p269bwm,
     author = {Jan M. Myszewski},
     title = {On roots of the automorphism group of a circular domain in $$\mathbb{C}$^n$
            },
     journal = {Annales Polonici Mathematici},
     volume = {55},
     year = {1991},
     pages = {269-276},
     zbl = {0762.32015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv55z1p269bwm}
}
Jan M. Myszewski. On roots of the automorphism group of a circular domain in $ℂ^n$
            . Annales Polonici Mathematici, Tome 55 (1991) pp. 269-276. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv55z1p269bwm/

[000] [1] J. F. Adams, Lectures on Lie Groups, Benjamin, New York 1969. | Zbl 0206.31604

[001] [2] W. Kaup and H. Upmeier, Banach spaces with biholomorphically equivalent balls are isomorphic, Proc. Amer. Math. Soc. 58 (1976), 129-133. | Zbl 0337.32012

[002] [3] J. M. Myszewski, On maximal tori of the automorphism group of circular domain in n, Demonstratio Math. 22 (4) (1989), 1067-1080. | Zbl 0765.32001

[003] [4] R. Narasimhan, Several Complex Variables, Chicago Lectures in Mathematics, The University of Chicago Press, Chicago & London 1971. | Zbl 0223.32001

[004] [5] T. Sunada, Holomorphic equivalence problem for bounded Reinhardt domains, Math. Ann. 235 (1978), 111-128. | Zbl 0357.32001