Let F ∈ ℂ[x,y]. Some theorems on the dependence of branches at infinity of the pencil of polynomials f(x,y) - λ, λ ∈ ℂ, on the parameter λ are given.
@article{bwmeta1.element.bwnjournal-article-apmv55z1p213bwm, author = {T. Krasi\'nski}, title = {On branches at infinity of a pencil of polynomials in two complex variables}, journal = {Annales Polonici Mathematici}, volume = {55}, year = {1991}, pages = {213-220}, zbl = {0756.32005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv55z1p213bwm} }
T. Krasiński. On branches at infinity of a pencil of polynomials in two complex variables. Annales Polonici Mathematici, Tome 55 (1991) pp. 213-220. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv55z1p213bwm/
[000] [1] J. Chądzyński and T. Krasiński, Exponent of growth of polynomial mappings of ℂ² into ℂ, in: Singularities, S. Łojasiewicz (ed.), Banach Center Publ. 20, PWN, Warszawa 1988, 147-160.
[001] [2] W. Engel, Ein Satz über ganze Cremona-Transformationen der Ebene, Math. Ann. 130 (1955), 11-19. | Zbl 0065.02603
[002] [3] T. T. Moh, On analytic irreducibility at ∞ of a pencil of curves, Proc. Amer. Math. Soc. 44 (1974), 22-24. | Zbl 0309.14011
[003] [4] W. Pawłucki, Le théorème de Puiseux pour une application sous-analytique, Bull. Polish Acad. Sci. Math. 32 (1984), 555-560. | Zbl 0574.32010
[004] [5] S. Saks and A. Zygmund, Analytic Functions, Monograf. Mat. 28, PWN, Warszawa 1965. | Zbl 0136.37301