We prove that among counterexamples to the Jacobian Conjecture, if there are any, we can find one of lowest degree, the coordinates of which have the form + terms of degree < m+n.
@article{bwmeta1.element.bwnjournal-article-apmv55z1p207bwm, author = {S\l awomir Ko\l odziej}, title = {Jung's type theorem for polynomial transformations of $\mathbb{C}$$^2$}, journal = {Annales Polonici Mathematici}, volume = {55}, year = {1991}, pages = {207-212}, zbl = {0772.14007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv55z1p207bwm} }
Sławomir Kołodziej. Jung's type theorem for polynomial transformations of ℂ². Annales Polonici Mathematici, Tome 55 (1991) pp. 207-212. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv55z1p207bwm/
[000] [1] S. S. Abhyankar, Expansion Techniques in Algebraic Geometry, Tata Inst. Fund. Research, Bombay 1977. | Zbl 0818.14001
[001] [2] H. Bass, E. H. Connell and D. Wright, The Jacobian Conjecture : reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc. 7 (2) (1982), 287-330. | Zbl 0539.13012
[002] [3] R. C. Heitmann, On the Jacobian Conjecture, J. Pure Appl. Algebra 64 (1990), 35-72. | Zbl 0704.13010
[003] [4] H. W. E. Jung, Über ganze birationale Transformationen der Ebene, J. Reine Angew. Math. 184 (1942), 161-174. | Zbl 0027.08503
[004] [5] O.-H. Keller, Ganze Cremona-Transformationen, Monatsh. Math. Phys. 47 (1939), 299-306.
[005] [6] L. G. Makar-Limanov, On automorphisms of the free algebra on two generators, Funktsional. Anal. i Prilozhen. 4 (3) (1970), 107-108 (in Russian).
[006] [7] K. Rusek, Polynomial automorphisms, preprint 456, IM PAN, 1989.
[007] [8] A. G. Vitushkin, On polynomial transformations of , in: Manifolds, Tokyo 1973, Univ. of Tokyo Press, 1975, 415-417.