Jung's type theorem for polynomial transformations of ℂ²
Sławomir Kołodziej
Annales Polonici Mathematici, Tome 55 (1991), p. 207-212 / Harvested from The Polish Digital Mathematics Library

We prove that among counterexamples to the Jacobian Conjecture, if there are any, we can find one of lowest degree, the coordinates of which have the form xmyn + terms of degree < m+n.

Publié le : 1991-01-01
EUDML-ID : urn:eudml:doc:262440
@article{bwmeta1.element.bwnjournal-article-apmv55z1p207bwm,
     author = {S\l awomir Ko\l odziej},
     title = {Jung's type theorem for polynomial transformations of $\mathbb{C}$$^2$},
     journal = {Annales Polonici Mathematici},
     volume = {55},
     year = {1991},
     pages = {207-212},
     zbl = {0772.14007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv55z1p207bwm}
}
Sławomir Kołodziej. Jung's type theorem for polynomial transformations of ℂ². Annales Polonici Mathematici, Tome 55 (1991) pp. 207-212. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv55z1p207bwm/

[000] [1] S. S. Abhyankar, Expansion Techniques in Algebraic Geometry, Tata Inst. Fund. Research, Bombay 1977. | Zbl 0818.14001

[001] [2] H. Bass, E. H. Connell and D. Wright, The Jacobian Conjecture : reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc. 7 (2) (1982), 287-330. | Zbl 0539.13012

[002] [3] R. C. Heitmann, On the Jacobian Conjecture, J. Pure Appl. Algebra 64 (1990), 35-72. | Zbl 0704.13010

[003] [4] H. W. E. Jung, Über ganze birationale Transformationen der Ebene, J. Reine Angew. Math. 184 (1942), 161-174. | Zbl 0027.08503

[004] [5] O.-H. Keller, Ganze Cremona-Transformationen, Monatsh. Math. Phys. 47 (1939), 299-306.

[005] [6] L. G. Makar-Limanov, On automorphisms of the free algebra on two generators, Funktsional. Anal. i Prilozhen. 4 (3) (1970), 107-108 (in Russian).

[006] [7] K. Rusek, Polynomial automorphisms, preprint 456, IM PAN, 1989.

[007] [8] A. G. Vitushkin, On polynomial transformations of n, in: Manifolds, Tokyo 1973, Univ. of Tokyo Press, 1975, 415-417.