The homogeneous transfinite diameter of a compact subset of N
Mieczysław Jędrzejowski
Annales Polonici Mathematici, Tome 55 (1991), p. 191-205 / Harvested from The Polish Digital Mathematics Library

Let K be a compact subset of N. A sequence of nonnegative numbers defined by means of extremal points of K with respect to homogeneous polynomials is proved to be convergent. Its limit is called the homogeneous transfinite diameter of K. A few properties of this diameter are given and its value for some compact subsets of N is computed.

Publié le : 1991-01-01
EUDML-ID : urn:eudml:doc:262363
@article{bwmeta1.element.bwnjournal-article-apmv55z1p191bwm,
     author = {Mieczys\l aw J\k edrzejowski},
     title = {The homogeneous transfinite diameter of a compact subset of $$\mathbb{C}$^N$
            },
     journal = {Annales Polonici Mathematici},
     volume = {55},
     year = {1991},
     pages = {191-205},
     zbl = {0748.31008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv55z1p191bwm}
}
Mieczysław Jędrzejowski. The homogeneous transfinite diameter of a compact subset of $ℂ^N$
            . Annales Polonici Mathematici, Tome 55 (1991) pp. 191-205. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv55z1p191bwm/

[000] [1] H. Alexander, Projective capacity, in: Conference on Several Complex Variables, Ann. of Math. Stud. 100, Princeton Univ. Press, 1981, 3-27.

[001] [2] T. Bloom, L. Bos, C. Christensen and N. Levenberg, Polynomial interpolation of holomorphic functions in and n, preprint, 1989. | Zbl 0763.32009

[002] [3] M. Fekete, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Z. 17 (1923), 228-249.

[003] [4] F. Leja, Sur les séries des polynômes homogènes, Rend. Circ. Mat. Palermo 56 (1932), 419-445.

[004] [5] F. Leja, Theory of Analytic Functions, PWN, Warszawa 1957 (in Polish).

[005] [6] F. Leja, Problèmes à résoudre posés à la Conférence, Colloq. Math. 7 (1959), 153.

[006] [7] N. Levenberg, Monge-Ampère measures associated to extremal plurisubharmonic functions in N, Trans. Amer. Math. Soc. 289 (1) (1985), 333-343. | Zbl 0541.31009

[007] [8] N. Levenberg and B. A. Taylor, Comparison of capacities in n, in: Proc. Toulouse 1983, Lecture Notes in Math. 1094, Springer, 1984, 162-172.

[008] [9] Nguyen Thanh Van, Familles de polynômes ponctuellement bornées, Ann. Polon. Math. 31 (1975), 83-90. | Zbl 0263.30004

[009] [10] M. Schiffer and J. Siciak, Transfinite diameter and analytic continuation of functions of two complex variables, Technical Report, Stanford 1961. | Zbl 0113.06202

[010] [11] J. Siciak, On some extremal functions and their applications in the theory of analytic functions of several complex variables, Trans. Amer. Math. Soc. 105 (2) (1962), 322-357. | Zbl 0111.08102

[011] [12] J. Siciak, Extremal plurisubharmonic functions and capacities in n, Sophia Kokyuroku in Math. 14, Sophia University, Tokyo 1982. | Zbl 0579.32025

[012] [13] J. Siciak, Families of polynomials and determining measures, Ann. Fac. Sci. Toulouse 9 (2) (1988), 193-211. | Zbl 0634.31005

[013] [14] V. P. Zakharyuta, Transfinite diameter, Chebyshev constants and a capacity of a compact set in n, Mat. Sb. 96 (138) (3) (1975), 374-389 (in Russian). | Zbl 0324.32009