We study the spectral properties of some group of unitary operators in the Hilbert space of square Lebesgue integrable holomorphic functions on a one-dimensional tube (see formula (1)). Applying the Genchev transform ([2], [5]) we prove that this group has continuous simple spectrum (Theorem 4) and that the projection-valued measure for this group has a very explicit form (Theorem 5).
@article{bwmeta1.element.bwnjournal-article-apmv55z1p157bwm, author = {Wojciech Hyb}, title = {On the spectral properties of translation operators in one-dimensional tubes}, journal = {Annales Polonici Mathematici}, volume = {55}, year = {1991}, pages = {157-161}, zbl = {0766.47015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv55z1p157bwm} }
Wojciech Hyb. On the spectral properties of translation operators in one-dimensional tubes. Annales Polonici Mathematici, Tome 55 (1991) pp. 157-161. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv55z1p157bwm/
[000] [1] N. Dunford and J. T. Schwartz, Linear Operators, Vol. 2, Interscience Publishers, New York 1963. | Zbl 0128.34803
[001] [2] T. G. Genchev, Integral representations for functions holomorphic in tube domain, C. R. Acad. Bulgar. Sci. 37 (1984), 717-720. | Zbl 0576.32005
[002] [3] H. Helson, The Spectral Theorem, Lecture Notes in Math. 1227, Springer, Berlin 1986. | Zbl 0615.47021
[003] [4] E. Hille, Analytic Function Theory, Vol. 2, Ginn, Boston 1962. | Zbl 0102.29401
[004] [5] M. Skwarczyński, Alternating projections between a strip and a halfplane, Math. Proc. Cambridge Philos. Soc. 102 (1987), 121-129. | Zbl 0625.30012
[005] [6] E. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, 1971. | Zbl 0232.42007