We formulate and prove a super analogue of the complex Frobenius theorem of Nirenberg.
@article{bwmeta1.element.bwnjournal-article-apmv55z1p139bwm, author = {C. Denson Hill and Santiago R. Simanca}, title = {The super complex Frobenius theorem}, journal = {Annales Polonici Mathematici}, volume = {55}, year = {1991}, pages = {139-155}, zbl = {0756.58006}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv55z1p139bwm} }
C. Denson Hill; Santiago R. Simanca. The super complex Frobenius theorem. Annales Polonici Mathematici, Tome 55 (1991) pp. 139-155. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv55z1p139bwm/
[000] [1] M. Eastwood and C. LeBrun, Thickening and supersymmetric extensions of complex manifolds, Amer. J. Math. 108 (1986), 1177-1192. | Zbl 0619.53039
[001] [2] P. Freund, Introduction to Supersymmetry, Cambridge Monographs Math. Phys., Cambridge 1986. | Zbl 0601.53067
[002] [3] C. D. Hill and S. R. Simanca, Newlander-Nirenberg theorem on supermanifolds with boundary, preprint, 1990. | Zbl 0842.32008
[003] [4] B. Kostant, Graded manifolds, graded Lie algebras, and prequantization, in: Lecture Notes in Math. 570, Springer, 1977, 177-306.
[004] [5] C. LeBrun and M. Rothstein, Moduli of super Riemann surfaces, Comm. Math. Phys. 117 (1988), 159-176. | Zbl 0662.58008
[005] [6] D. A. Leites, Introduction to the theory of supermanifolds, Russian Math. Surveys 35 (1980), 3-57. | Zbl 0439.58007
[006] [7] Yu. I. Manin, Gauge Field Theory and Complex Geometry, Grundlehren Math. Wiss. 289, Springer, 1988 (Russian original published by Nauka, Moscow 1984).
[007] [8] A. McHugh, A Newlander-Nirenberg theorem for super-manifolds, J. Math. Phys. 30 (5) (1989), 1039-1042. | Zbl 0679.58008
[008] [9] L. Nirenberg, A Complex Frobenius Theorem, Seminars on Analytic Functions, Vol. 1, Institute of Advanced Study, Princeton 1958. | Zbl 0099.37502