Holomorphic approximation of CR functions on tubular submanifolds of ℂ²
André Boivin ; Roman Dwilewicz
Annales Polonici Mathematici, Tome 55 (1991), p. 11-18 / Harvested from The Polish Digital Mathematics Library

The purpose of this paper is to take a closer look at uniform semi-global (i.e. on compact subsets) holomorphic approximation of CR functions on tubular submanifolds in ℂ².

Publié le : 1991-01-01
EUDML-ID : urn:eudml:doc:262426
@article{bwmeta1.element.bwnjournal-article-apmv55z1p11bwm,
     author = {Andr\'e Boivin and Roman Dwilewicz},
     title = {Holomorphic approximation of CR functions on tubular submanifolds of $\mathbb{C}$$^2$},
     journal = {Annales Polonici Mathematici},
     volume = {55},
     year = {1991},
     pages = {11-18},
     zbl = {0754.32008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv55z1p11bwm}
}
André Boivin; Roman Dwilewicz. Holomorphic approximation of CR functions on tubular submanifolds of ℂ². Annales Polonici Mathematici, Tome 55 (1991) pp. 11-18. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv55z1p11bwm/

[000] [AH] A. Andreotii and C. D. Hill, E. E. Levi convexity and the Hans Lewy problem. Part I: Reduction to vanishing theorems, Ann. Scuola Norm. Sup. Pisa 26 (1972), 325-363. | Zbl 0256.32007

[001] [BT] M. S. Baouendi and F. Trèves, A property of the functions and distributions annihilated by a locally integrable system of complex vector fields, Ann. of Math. 113 (1981), 387-421. | Zbl 0491.35036

[002] [C] E. M. Chirka, personal communication.

[003] [D] R. Dwilewicz, Holomorphic approximation in the theory of Cauchy-Riemann functions, in: Complex Analysis, Functional Analysis and Approximation Theory, North-Holland Math. Stud. 125, North-Holland, 1986, 71-82.

[004] [DG] R. Dwilewicz and P. M. Gauthier, Global holomorphic approximations of CR functions on CR manifolds, Complex Variables 4 (1985), 377-391. | Zbl 0548.32011

[005] [DF] K. Diederich and J. E. Fornæss, Pseudoconvex domains: An example with nontrivial Nebenhülle, Math. Ann. 225 (1977), 275-292. | Zbl 0327.32008

[006] [FN] J. E. Fornæss and A. Nagel, The Mergelyan property for weakly pseudoconvex domains, Manuscripta Math. 22 (1977), 199-208. | Zbl 0391.32010

[007] [K] M. Kazlow, CR functions and tube manifolds, Trans. Amer. Math. Soc. 255 (1979), 153-171. | Zbl 0426.32005

[008] [M] A. I. Markushevich, Theory of Functions of a Complex Variable, Vol. III, Prentice-Hall, Englewood Cliffs, N.J., 1967. | Zbl 0148.05201

[009] [N1] J. Nunemacher, Approximation theory on totally real submanifolds, Math. Ann. 224 (1976), 129-141. | Zbl 0333.32015

[010] [N2] J. Nunemacher, Approximation theory on CR submanifolds, in: Proc. Sympos. Pure Math. 30, Part II, Amer. Math. Soc., 1977, 181-186.

[011] [S] A. Sakai, Uniform approximation in several complex variables, Osaka J. Math. 15 (1978), 589-611. | Zbl 0409.32013