On certain subclasses of bounded univalent functions
J. Fuka ; Z. J. Jakubowski
Annales Polonici Mathematici, Tome 55 (1991), p. 109-115 / Harvested from The Polish Digital Mathematics Library

Let = z ∈ ℂ; |z| < 1, T = z ∈ ℂ; |z|=1. Denote by S the class of functions f of the form f(z) = z + a₂z² + ... holomorphic and univalent in , and by S(M), M > 1, the subclass of functions f of the family S such that |f(z)| < M in . We introduce (and investigate the basic properties of) the class S(M,m;α), 0 < m ≤ M < ∞, 0 ≤ α ≤ 1, of bounded functions f of the family S for which there exists an open arcIα=Iα(f)T of length 2πα such that lim¯zz,z|f(z)|M for every zIα and lim¯zz,z|f(z)|m for every zTĪα.

Publié le : 1991-01-01
EUDML-ID : urn:eudml:doc:262312
@article{bwmeta1.element.bwnjournal-article-apmv55z1p109bwm,
     author = {J. Fuka and Z. J. Jakubowski},
     title = {On certain subclasses of bounded univalent functions},
     journal = {Annales Polonici Mathematici},
     volume = {55},
     year = {1991},
     pages = {109-115},
     zbl = {0755.30023},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv55z1p109bwm}
}
J. Fuka; Z. J. Jakubowski. On certain subclasses of bounded univalent functions. Annales Polonici Mathematici, Tome 55 (1991) pp. 109-115. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv55z1p109bwm/

[00000] [1] J. Fuka and Z. Jakubowski, On certain subclasses of bounded univalent functions, in: Proc. of the XI-th Instructional Conference on the Theory of Extremal Problems, Łódź, 1990, 20-27 (in Polish). | Zbl 0755.30023

[00001] [2] A. I. Markushevich, Theory of Analytic Functions, Vol. 2, Nauka, Moscow 1968 (in Russian). | Zbl 0506.01013

[00002] [3] P. T. Mocanu, Une propriété de convexité généralisée dans la théorie de la représentation conforme, Mathematica (Cluj) 11 (1969), 127-133. | Zbl 0195.36401

[00003] [4] G. Pick, Über die konforme Abbildung eines Kreises auf ein schlichtes und zugleich beschränktes Gebiet, Sitzungsber. Akad. Wiss. Wien 126 (1917), 247-263. | Zbl 46.0553.01

[00004] [5] K. Skalska, Certain subclasses of the class of typically real functions, Ann. Polon. Math. 38 (1980), 141-152. | Zbl 0465.30012