The integral representation for the multiplicity of an isolated zero of a holomorphic mapping by means of Weil’s formulae is obtained.
@article{bwmeta1.element.bwnjournal-article-apmv55z1p103bwm, author = {Maria Frontczak and Andrzej Miodek}, title = {Weil's formulae and multiplicity}, journal = {Annales Polonici Mathematici}, volume = {55}, year = {1991}, pages = {103-108}, zbl = {0755.32031}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv55z1p103bwm} }
Maria Frontczak; Andrzej Miodek. Weil's formulae and multiplicity. Annales Polonici Mathematici, Tome 55 (1991) pp. 103-108. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv55z1p103bwm/
[000] [1] E. M. Chirka, Complex Analytic Sets, Nauka, Moscow 1985 (in Russian). | Zbl 0781.32011
[001] [2] R. Engelking, General Topology, PWN, Warszawa 1977.
[002] [3] H. Federer, Geometric Measure Theory, Springer, New York 1969. | Zbl 0176.00801
[003] [4] M. Frontczak, Integral representations of Cauchy type for holomorphic functions on Weil's domains, Bull. Soc. Sci. Łódź, to appear. | Zbl 0878.32007
[004] [5] M. Frontczak, A new simple proof of Weil's integral formula for canonical domains, Bull. Soc. Sci. Łódź, to appear. | Zbl 0878.32008
[005] [6] P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley-Interscience, New York 1978. | Zbl 0408.14001
[006] [7] M. Hervé, Several Complex Variables, Local Theory, Oxford Univ. Press, Bombay 1963. | Zbl 0113.29003
[007] [8] S. Łojasiewicz, Ensembles semi-analytiques, I.H.E.S., Bures-sur-Yvette 1965.
[008] [9] S. Łojasiewicz, Introduction to Complex Analytic Geometry, PWN, Warszawa 1988 (in Polish). | Zbl 0773.32007
[009] [10] B. V. Shabat, Introduction to Complex Analysis, Part II, Nauka, Moscow 1985 (in Russian). | Zbl 0574.30001
[010] [11] H. Whitney, Complex Analytic Varieties, Addison-Wesley, Reading, Mass., 1972. | Zbl 0265.32008