Norm and Taylor coefficients estimates of holomorphic functions in balls
Jacob Burbeam ; Do Young Kwak
Annales Polonici Mathematici, Tome 55 (1991), p. 271-297 / Harvested from The Polish Digital Mathematics Library

A classical result of Hardy and Littlewood states that if f(z)=m=0amzm is in Hp, 0 < p ≤ 2, of the unit disk of ℂ, then m=0(m+1)p-2|am|pcpfpp where cp is a positive constant depending only on p. In this paper, we provide an extension of this result to Hardy and weighted Bergman spaces in the unit ball of n, and use this extension to study some related multiplier problems in n.

Publié le : 1991-01-01
EUDML-ID : urn:eudml:doc:262478
@article{bwmeta1.element.bwnjournal-article-apmv54z3p271bwm,
     author = {Jacob Burbeam and Do Young Kwak},
     title = {Norm and Taylor coefficients estimates of holomorphic functions in balls},
     journal = {Annales Polonici Mathematici},
     volume = {55},
     year = {1991},
     pages = {271-297},
     zbl = {0743.32006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv54z3p271bwm}
}
Jacob Burbeam; Do Young Kwak. Norm and Taylor coefficients estimates of holomorphic functions in balls. Annales Polonici Mathematici, Tome 55 (1991) pp. 271-297. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv54z3p271bwm/

[000] [1] F. Beatrous and J. Burbea, Holomorphic Sobolev spaces on the ball, Dissertationes Math. 276 (1989). | Zbl 0691.46024

[001] [2] R. R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. 103 (1976), 611-635. | Zbl 0326.32011

[002] [3] P. L. Duren, Theory of Hp Spaces, Academic Press, New York 1970. | Zbl 0215.20203

[003] [4] P. L. Duren and A. L. Shields, Properties of Hp (0 < p < 1) and its containing Banach space, Trans. Amer. Math. Soc. 141 (1969), 255. | Zbl 0181.40401

[004] [5] P. L. Duren and A. L. Shields,Coefficient multipliers of Hp and Bp spaces, Pacific J. Math. 32 (1970), 69-78.

[005] [6] T. M. Flett, On the rate of growth of mean values of holomorphic and harmonic functions, Proc. London Math. Soc. 20 (1970), 749.

[006] [7] F. Forelli and W. Rudin, Projections on the spaces of holomorphic functions in balls, Indiana Univ. Math. J. 24 (1974), 593-602. | Zbl 0297.47041

[007] [8] G. H. Hardy and J. E. Littlewood, Theorems concerning mean values of analytic or harmonic functions, Quart. J. Math. Oxford Ser. 12 (1942), 221-256. | Zbl 0060.21702

[008] [9] A. Korányi and S. Vagi, Singular integrals in homogeneous spaces and some problems of classical analysis, Ann. Scuola Norm. Sup. Pisa 25 (1971), 575-648. | Zbl 0291.43014

[009] [10] E. M. Stein and G. Weiss, On the interpolation of analytic families of operators acting on Hp spaces, Tôhoku Math. J. (2) 9 (1957), 318-339. | Zbl 0083.34201