A classical result of Hardy and Littlewood states that if is in , 0 < p ≤ 2, of the unit disk of ℂ, then where is a positive constant depending only on p. In this paper, we provide an extension of this result to Hardy and weighted Bergman spaces in the unit ball of , and use this extension to study some related multiplier problems in .
@article{bwmeta1.element.bwnjournal-article-apmv54z3p271bwm, author = {Jacob Burbeam and Do Young Kwak}, title = {Norm and Taylor coefficients estimates of holomorphic functions in balls}, journal = {Annales Polonici Mathematici}, volume = {55}, year = {1991}, pages = {271-297}, zbl = {0743.32006}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv54z3p271bwm} }
Jacob Burbeam; Do Young Kwak. Norm and Taylor coefficients estimates of holomorphic functions in balls. Annales Polonici Mathematici, Tome 55 (1991) pp. 271-297. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv54z3p271bwm/
[000] [1] F. Beatrous and J. Burbea, Holomorphic Sobolev spaces on the ball, Dissertationes Math. 276 (1989). | Zbl 0691.46024
[001] [2] R. R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math. 103 (1976), 611-635. | Zbl 0326.32011
[002] [3] P. L. Duren, Theory of Spaces, Academic Press, New York 1970. | Zbl 0215.20203
[003] [4] P. L. Duren and A. L. Shields, Properties of (0 < p < 1) and its containing Banach space, Trans. Amer. Math. Soc. 141 (1969), 255. | Zbl 0181.40401
[004] [5] P. L. Duren and A. L. Shields,Coefficient multipliers of and spaces, Pacific J. Math. 32 (1970), 69-78.
[005] [6] T. M. Flett, On the rate of growth of mean values of holomorphic and harmonic functions, Proc. London Math. Soc. 20 (1970), 749.
[006] [7] F. Forelli and W. Rudin, Projections on the spaces of holomorphic functions in balls, Indiana Univ. Math. J. 24 (1974), 593-602. | Zbl 0297.47041
[007] [8] G. H. Hardy and J. E. Littlewood, Theorems concerning mean values of analytic or harmonic functions, Quart. J. Math. Oxford Ser. 12 (1942), 221-256. | Zbl 0060.21702
[008] [9] A. Korányi and S. Vagi, Singular integrals in homogeneous spaces and some problems of classical analysis, Ann. Scuola Norm. Sup. Pisa 25 (1971), 575-648. | Zbl 0291.43014
[009] [10] E. M. Stein and G. Weiss, On the interpolation of analytic families of operators acting on spaces, Tôhoku Math. J. (2) 9 (1957), 318-339. | Zbl 0083.34201