The Oka-Weil theorem in topological vector spaces
Bui Dac Tac
Annales Polonici Mathematici, Tome 55 (1991), p. 255-262 / Harvested from The Polish Digital Mathematics Library

It is shown that a sequentially complete topological vector space X with a compact Schauder basis has WSPAP (see Definition 2) if and only if X has a pseudo-homogeneous norm bounded on every compact subset of X.

Publié le : 1991-01-01
EUDML-ID : urn:eudml:doc:262455
@article{bwmeta1.element.bwnjournal-article-apmv54z3p255bwm,
     author = {Bui Dac Tac},
     title = {The Oka-Weil theorem in topological vector spaces},
     journal = {Annales Polonici Mathematici},
     volume = {55},
     year = {1991},
     pages = {255-262},
     zbl = {0736.46043},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv54z3p255bwm}
}
Bui Dac Tac. The Oka-Weil theorem in topological vector spaces. Annales Polonici Mathematici, Tome 55 (1991) pp. 255-262. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv54z3p255bwm/

[000] [1] R. M. Aron and M. Schottenloher, Compact holomorphic mappings on Banach spaces and the approximation property, J. Funct. Anal. 21 (1976), 7-30. | Zbl 0328.46046

[001] [2] A. Bayoumi, The Levi problem and the radius of convergence of holomorphic functions on metric vector spaces, in: Lecture Notes in Math. 834, Springer, 1981, 9-32.

[002] [3] A. Bayoumi, Bounding subsets of some metric vector spaces, Ark. Mat. 18 (1980), 13-17. | Zbl 0443.46029

[003] [4] A. Martineau, Sur une propriété caractéristique d'un produit de droites, Arch. Math. (Basel) 11 (1960), 423-426. | Zbl 0099.31501

[004] [5] C. Matyszczyk, Approximation of analytic and continuous mappings by polynomials in Fréchet spaces, Studia Math. 60 (1977), 223-238. | Zbl 0357.46016

[005] [6] P. L. Noverraz, Pseudo-convexité, Convexité Polynomiale et Domaines d'Holomorphie en Dimension Infinie, North-Holland Math. Stud. 3, Amsterdam 1973. | Zbl 0251.46049