We prove that - in the case of typical external forces - the set of stationary solutions of the Navier-Stokes equations is the limit of the (full) sequence of sets of solutions of the appropriate Galerkin equations, in the sense of the Hausdorff metric (for every inner approximation of the space of velocities). Then the uniqueness of the N-S equations is equivalent to the uniqueness of almost every of these Galerkin equations.
@article{bwmeta1.element.bwnjournal-article-apmv54z2p93bwm, author = {Konstanty Holly}, title = {Some application of the implicit function theorem to the stationary Navier-Stokes equations}, journal = {Annales Polonici Mathematici}, volume = {55}, year = {1991}, pages = {93-109}, zbl = {0732.76022}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv54z2p93bwm} }
Konstanty Holly. Some application of the implicit function theorem to the stationary Navier-Stokes equations. Annales Polonici Mathematici, Tome 55 (1991) pp. 93-109. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv54z2p93bwm/
[000] [1] M. S. Berger, Nonlinearity and Functional Analysis, Benjamin, 1977. | Zbl 0368.47001
[001] [2] M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal. 8 (1971), p. 339. | Zbl 0219.46015
[002] [3] C. Foiaş et J. C. Saut, Remarques sur les équations de Navier-Stokes stationnaires, Ann. Scuola Norm. Sup. Pisa (5) 1 (1983), p. 186. | Zbl 0546.35058
[003] [4] C. Foiaş and R. Temam, Structure of the set of stationary solutions of the Navier-Stokes equations, Comm. Pure. Appl. Math. 30 (1977), 149-164. | Zbl 0335.35077
[004] [5] J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris 1969. | Zbl 0189.40603
[005] [6] K. Maurin, Analysis II, PWN, Warszawa 1980.
[006] [7] L. Nirenberg, Topics in Nonlinear Functional Analysis, Courant Institute, New York 1974. | Zbl 0286.47037
[007] [8] W. Rudin, Functional Analysis, McGraw-Hill, New York 1973, Chap. 4.
[008] [9] J. C. Saut, Generic properties of nonlinear boundary value problems, in: Partial Differential Equations, Banach Center Publ. 10, PWN, Warszawa 1983, 331-351.
[009] [10] R. Temam, Navier-Stokes Equations, North-Holland, Amsterdam 1979.