The function (p ∈ ℕ = 1,2,3,...) analytic in the unit disk E is said to be in the class if (, where and h is convex univalent in E with h(0) = 1. We study the class and investigate whether the inclusion relation holds for p > 1. Some coefficient estimates for the class are also obtained. The class of functions satisfying the condition is also studied.
@article{bwmeta1.element.bwnjournal-article-apmv54z2p167bwm, author = {K. S. Padmanabhan and M. Jayamala}, title = {A class of analytic functions defined by Ruscheweyh derivative}, journal = {Annales Polonici Mathematici}, volume = {55}, year = {1991}, pages = {167-178}, zbl = {0727.30013}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv54z2p167bwm} }
K. S. Padmanabhan; M. Jayamala. A class of analytic functions defined by Ruscheweyh derivative. Annales Polonici Mathematici, Tome 55 (1991) pp. 167-178. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv54z2p167bwm/
[00000] [1] P. Eenigenburg, S. S. Miller, P. T. Mocanu and M. O. Reade, On a Briot-Bouquet differential subordination, in: General Inequalities 3, Birkhäuser, Basel 1983, 339-348.
[00001] [2] R. M. Goel and N. S. Sohi, A new criterion for p-valent functions, Proc. Amer. Math. Soc. 78 (1980), 353-357. | Zbl 0444.30012
[00002] [3] S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975), 109-115. | Zbl 0303.30006
[00003] [4] T. Umezawa, Multivalently close-to-convex functions, Proc. Amer. Math. Soc. 8 (1957), 869-874. | Zbl 0080.28301