A class of analytic functions defined by Ruscheweyh derivative
K. S. Padmanabhan ; M. Jayamala
Annales Polonici Mathematici, Tome 55 (1991), p. 167-178 / Harvested from The Polish Digital Mathematics Library

The function f(z)=zp+k=1ap+kzp+k (p ∈ ℕ = 1,2,3,...) analytic in the unit disk E is said to be in the class Kn,p(h) if (Dn+pf)/(Dn+p-1f)h, where Dn+p-1f=(zp)/((1-z)p+n)*f and h is convex univalent in E with h(0) = 1. We study the class Kn,p(h) and investigate whether the inclusion relation Kn+1,p(h)Kn,p(h) holds for p > 1. Some coefficient estimates for the class are also obtained. The class An,p(a,h) of functions satisfying the condition a*(Dn+pf)/(Dn+p-1f)+(1-a)*(Dn+p+1f)/(Dn+pf)h is also studied.

Publié le : 1991-01-01
EUDML-ID : urn:eudml:doc:262247
@article{bwmeta1.element.bwnjournal-article-apmv54z2p167bwm,
     author = {K. S. Padmanabhan and M. Jayamala},
     title = {A class of analytic functions defined by Ruscheweyh derivative},
     journal = {Annales Polonici Mathematici},
     volume = {55},
     year = {1991},
     pages = {167-178},
     zbl = {0727.30013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv54z2p167bwm}
}
K. S. Padmanabhan; M. Jayamala. A class of analytic functions defined by Ruscheweyh derivative. Annales Polonici Mathematici, Tome 55 (1991) pp. 167-178. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv54z2p167bwm/

[00000] [1] P. Eenigenburg, S. S. Miller, P. T. Mocanu and M. O. Reade, On a Briot-Bouquet differential subordination, in: General Inequalities 3, Birkhäuser, Basel 1983, 339-348.

[00001] [2] R. M. Goel and N. S. Sohi, A new criterion for p-valent functions, Proc. Amer. Math. Soc. 78 (1980), 353-357. | Zbl 0444.30012

[00002] [3] S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975), 109-115. | Zbl 0303.30006

[00003] [4] T. Umezawa, Multivalently close-to-convex functions, Proc. Amer. Math. Soc. 8 (1957), 869-874. | Zbl 0080.28301