We construct a transformation T:[0,1] → [0,1] having the following properties: 1) (T,|·|) is completely mixing, where |·| is Lebesgue measure, 2) for every f∈ L¹ with ∫fdx = 1 and φ ∈ C[0,1] we have , where μ is the cylinder measure on the standard Cantor set, 3) if φ ∈ C[0,1] then for Lebesgue-a.e. x.
1985 Mathematics Subject Classification: Primary 58F13.
@article{bwmeta1.element.bwnjournal-article-apmv54z2p147bwm, author = {Ryszard Rudnicki}, title = {On a one-dimensional analogue of the Smale horseshoe}, journal = {Annales Polonici Mathematici}, volume = {55}, year = {1991}, pages = {147-153}, zbl = {0731.58047}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv54z2p147bwm} }
Ryszard Rudnicki. On a one-dimensional analogue of the Smale horseshoe. Annales Polonici Mathematici, Tome 55 (1991) pp. 147-153. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv54z2p147bwm/
[00000] [1] P. Billingsley, Probability and Measure, Wiley, New York 1979.
[00001] [2] R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Math. 47, Springer, Berlin 1975. | Zbl 0308.28010
[00002] [3] R. Bowen and D. Ruelle, The ergodic theory of Axiom A flows, Invent. Math. 29 (1975), 181-202. | Zbl 0311.58010
[00003] [4] A. Lasota, Thoughts and conjectures on chaos, preprint.
[00004] [5] A. Lasota and J. A. Yorke, On the existence of invariant measures for piecewise monotonic transformations, Trans. Amer. Math. Soc. 186 (1973), 481-488. | Zbl 0298.28015
[00005] [6] M. Lin, Mixing for Markov operators, Z. Wahrsch. Verw. Gebiete 19 (1971), 231-242. | Zbl 0212.49301
[00006] [7] L.-S. Young, Bowen-Ruelle measures for certain piecewise hyperbolic maps, Trans. Amer. Math. Soc. 287 (1985), 41-48. | Zbl 0552.58022