The electric potential u in a solute of electrolyte satisfies the equation Δu(x) = f(u(x)), x ∈ Ω ⊂ ℝ³, . One studies the existence of a solution of the problem and its properties.
@article{bwmeta1.element.bwnjournal-article-apmv54z2p125bwm, author = {A. Krzywicki and T. Nadzieja}, title = {Poisson-Boltzmann equation in $\mathbb{R}$$^3$}, journal = {Annales Polonici Mathematici}, volume = {55}, year = {1991}, pages = {125-134}, zbl = {0733.35039}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv54z2p125bwm} }
A. Krzywicki; T. Nadzieja. Poisson-Boltzmann equation in ℝ³. Annales Polonici Mathematici, Tome 55 (1991) pp. 125-134. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv54z2p125bwm/
[00000] [1] R. Courant, Partial Differential Equations, Interscience, New York London 1962. | Zbl 0099.29504
[00001] [2] A. Friedman and K. Tintarev, Boundary asymptotics for solutions of the Poisson-Boltzmann equation, J. Differential Equations 69 (1987), 15-38. | Zbl 0637.35035
[00002] [3] A. Krzywicki and T. Nadzieja, Radially symmetric Poisson-Boltzmann equation in a domain expanding to infinity, submitted. | Zbl 0722.34016
[00003] [4] W. Pogorzelski, Integral Equations and their Applications, Pergamon Press and PWN, 1969.
[00004] [5] I. Rubinstein, Counterion condensation as an exact limiting property of solution of the Poisson-Boltzmann equation, SIAM J. Appl. Math. 46 (1986), 1024-1038. | Zbl 0632.76106