In this paper we study the periodic-Neumann boundary value problem for a class of nonlinear parabolic equations. We prove a new uniqueness result and study the structure of the set of solutions when there exist more than one solution. The ideas are applied to a Neumann problem for an elliptic equation.
@article{bwmeta1.element.bwnjournal-article-apmv54z2p111bwm, author = {Juan J. Nieto}, title = {Periodic-Neumann boundary value problem for nonlinear parabolic equations and application to an elliptic equation}, journal = {Annales Polonici Mathematici}, volume = {55}, year = {1991}, pages = {111-116}, zbl = {0737.35032}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-apmv54z2p111bwm} }
Juan J. Nieto. Periodic-Neumann boundary value problem for nonlinear parabolic equations and application to an elliptic equation. Annales Polonici Mathematici, Tome 55 (1991) pp. 111-116. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-apmv54z2p111bwm/
[000] [1] S. Ahmad, A resonance problem in which the nonlinearity may grow linearly, Proc. Amer. Math. Soc. 92 (1984), 381-384. | Zbl 0562.34011
[001] [2] H. Amann, Periodic solutions of semilinear parabolic equations, in: Nonlinear Analysis, Academic Press, New York 1978, 1-29.
[002] [3] D. W. Bange, Periodic solutions of a quasilinear parabolic differential equation, J. Differential Equations 17 (1975), 61-72. | Zbl 0291.35051
[003] [4] J. W. Bebernes and M. Martelli, On the structure of the solution set for periodic boundary value problems, Nonlinear Anal. 4 (1980), 821-830. | Zbl 0453.34019
[004] [5] J. W. Bebernes and K. Schmitt, Invariant sets and Hukuhara-Kneser property for systems of parabolic partial differential equations, Rocky Mountain J. Math. 7 (1977), 557-567. | Zbl 0377.35035
[005] [6] L. Cesari, Functional analysis, nonlinear differential equations and the alternative method, in: Nonlinear Functional Analysis and Differential Equations, Marcel Dekker, New York 1976, 1-197.
[006] [7] L. Cesari and R. Kannan, An abstract theorem at resonance, Proc. Amer. Math. Soc. 63 (1977), 221-225. | Zbl 0361.47021
[007] [8] L. Cesari and R. Kannan, An existence theorem for periodic solutions of nonlinear parabolic equations, Istit. Lombardo Accad. Sci. Lett. Rend. A 116 (1985), 19-26. | Zbl 0593.35008
[008] [9] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, N.J., 1964. | Zbl 0144.34903
[009] [10] R. Kannan and V. Lakshmikantham, Existence of periodic solutions of semilinear parabolic equations and the method of upper and lower solutions, J. Math. Anal. Appl. 97 (1983), 291-299. | Zbl 0542.35044
[010] [11] P. J. McKenna, Uniqueness of solutions for semilinear equations at resonance, Nonlinear Anal. 2 (1978), 235-237. | Zbl 0383.35026
[011] [12] J. Mawhin, Semi-coercive monotone variational problems, Acad. Roy. Belg. Bull. Cl. Sci. (5) 73 (1987), 118-130. | Zbl 0647.49007
[012] [13] J. J. Nieto, Periodic solutions of nonlinear parabolic equations, J. Differential Equations 60 (1985), 90-102. | Zbl 0537.35049
[013] [14] J. J. Nieto, Nonuniqueness of solutions for semilinear elliptic equations at resonance, Boll. Un. Mat. Ital. (6) 5-A (1986), 205-210. | Zbl 0615.35037
[014] [15] J. J. Nieto, Decreasing sequences of compact absolute retracts and nonlinear problems, Boll. Un. Mat. Ital. (7) 2-B (1988), 497-507. | Zbl 0667.47035
[015] [16] T. I. Seidman, Periodic solutions of a nonlinear parabolic equation, J. Differential Equations 19 (1975), 242-257. | Zbl 0281.35005