Neural networks as a tool for georadar data processing
Piotr Szymczyk ; Sylwia Tomecka-Suchoń ; Magdalena Szymczyk
International Journal of Applied Mathematics and Computer Science, Tome 25 (2015), p. 955-960 / Harvested from The Polish Digital Mathematics Library

In this article a new neural network based method for automatic classification of ground penetrating radar (GPR) traces is proposed. The presented approach is based on a new representation of GPR signals by polynomials approximation. The coefficients of the polynomial (the feature vector) are neural network inputs for automatic classification of a special kind of geologic structure-a sinkhole. The analysis and results show that the classifier can effectively distinguish sinkholes from other geologic structures.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:275901
@article{bwmeta1.element.bwnjournal-article-amcv25i4p955bwm,
     author = {Piotr Szymczyk and Sylwia Tomecka-Sucho\'n and Magdalena Szymczyk},
     title = {Neural networks as a tool for georadar data processing},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {25},
     year = {2015},
     pages = {955-960},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv25i4p955bwm}
}
Piotr Szymczyk; Sylwia Tomecka-Suchoń; Magdalena Szymczyk. Neural networks as a tool for georadar data processing. International Journal of Applied Mathematics and Computer Science, Tome 25 (2015) pp. 955-960. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv25i4p955bwm/

[000] Marcak, H., Gołębiowski, T. and Tomecka-Suchoń, S. (2008). Geotechnical analysis and 4D GPR measurements for the assessment of the risk of sinkholes occurring in a Polish mining area, Near Surface Geophysics 6(4) 233-243.

[001] McClymont, A.F., Green, A.G., Streich, R., Horstmeyer, H., Tronicke, J., Nobes, D.C., Pettinga, J., Campbell, J. and Langridge, R. (2008). Visualization of active faults using geometric attributes of 3D GPR data: An example from the alpine fault zone, New Zealand Geophysics 73(2): B11-B23.

[002] Miaskowski, A. and Cieszczyk, S. (2011). Two-step inverse problem algorithm for ground penetrating radar technique, Przegląd Elektrotechniczny 87(12b): 22-24.

[003] Tadeusiewicz, R. (2010). New trends in neurocybernetics, Computer Methods in Materials Science 10(1): 1-7.

[004] Tadeusiewicz, R. (2011). Introduction to intelligent systems, in B.M. Wilamowski and J.D. Irvis (Eds.), Fault Diagnosis. Models, Artificial Intelligence, Applications, CRC Press, Boca Raton, FL, Chapter 1, pp. 1-1-1-12.

[005] Tadeusiewicz, R., Chaki, R. and Chaki, N. (2014). Exploring Neural Networks with C#, CRC Press, Boca Raton, FL.

[006] Wei-Li, Huilin-Zhou and Xiaoting-Wan (2012). Generalized Hough transform and ANN for subsurface cylindrical object location and parameters inversion from GPR data, 14th International Conference on Ground Penetrating Radar GPR, Shanghai, China, pp. 281-285.