Observability and controllability analysis for sandwich systems with backlash
Na Luo ; Yonghong Tan ; Ruili Dong
International Journal of Applied Mathematics and Computer Science, Tome 25 (2015), p. 803-814 / Harvested from The Polish Digital Mathematics Library

In this paper, an approach to analyze the observability and controllability of sandwich systems with backlash is proposed. In this method, a non-smooth state-space function is used to describe the sandwich systems with backlash which are also non-smooth non-linear systems. Then, a linearization method based on non-smooth optimization is proposed to derive a linearized state-space function to approximate the non-smooth sandwich systems within a bounded region around the equilibrium point that we are interested in. Afterwards, both observability and controllability matrices are constructed and the methods to analyze the observability as well as controllability of sandwich system with backlash are derived. Finally, numerical examples are presented to validate the proposed method.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:276009
@article{bwmeta1.element.bwnjournal-article-amcv25i4p803bwm,
     author = {Na Luo and Yonghong Tan and Ruili Dong},
     title = {Observability and controllability analysis for sandwich systems with backlash},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {25},
     year = {2015},
     pages = {803-814},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv25i4p803bwm}
}
Na Luo; Yonghong Tan; Ruili Dong. Observability and controllability analysis for sandwich systems with backlash. International Journal of Applied Mathematics and Computer Science, Tome 25 (2015) pp. 803-814. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv25i4p803bwm/

[000] Balachandran, K. and Shanmugam, D. (2014). Controllability of nonlinear implicit fractional integrodifferential systems, International Journal of Applied Mathematics and Computer Science 24(4): 713-722, DOI: 10.2478/amcs-2014-0052. | Zbl 1309.93025

[001] Clarke, F.H. (1983). Optimization and Nonsmooth Analysis, John Wiley, New York, NY. | Zbl 0582.49001

[002] Dong, R., Tan, Y., Chen, H. and Xie, Y. (2012). Nonsmooth recursive identification of sandwich systems with backlash-like hysteresis, Journal of Applied Mathematics 2012: 1-16, ID 457601. | Zbl 1251.93131

[003] Herman, R. and Krener, A. (1977). Nonlinear controllability and observability, IEEE Transactions on Automatic Control 22(5): 728-740. | Zbl 0396.93015

[004] Isidori, A. (1989). Nonlinear Control Systems, Springer, London. | Zbl 0693.93046

[005] Jank, G. (2002). Controllability, observability and optimal control of continuous-time 2-D systems, International Journal of Applied Mathematics and Computer Science 12(2): 181-195. | Zbl 1014.93017

[006] Kalman, R., Falb, P. and Arbib, M. (1969). Topics in Mathematical System Theory, Mc Graw-Hill Company, New York, NY. | Zbl 0231.49001

[007] Karthikeyan, S., Balachandran, K. and Murugesan, S. (2015). Controllability of nonlinear stochastic systems with multiple time-varying delays in control, International Journal of Applied Mathematics and Computer Science 25(2): 207-215, DOI: 10.1515/amcs-2015-0015. | Zbl 1322.93020

[008] Klamka, J. (1975). On the global controllability of perturbed nonlinear systems, IEEE Transactions on Automatic Control 20(1): 170-172. | Zbl 0299.93007

[009] Klamka, J. (1991). Controllability of Dynamical Systems, Kluwer Academic Publishers, Dordrecht. | Zbl 0732.93008

[010] Klamka, J. (2002). Controllability of nonlinear discrete systems, American Control Conference, Anchorage, AK, USA, pp. 4670-4671.

[011] Klamka, J. (2013a). Constrained controllability of second order dynamical systems with delay, Control and Cybernetics 42(1): 111-121. | Zbl 1318.93019

[012] Klamka, J. (2013b). Controllability of dynamical systems: A survey, Bulletin of the Polish Academy of Sciences: Technical Sciences 61(2): 221-229.

[013] Klamka, J., Czornik, A. and Niezabitowski, M. (2013). Stability and controllability of switched systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 61(3): 547-554.

[014] Koplon, R. and Sontag, E. (1993). Linear systems with sign observations, SIAM Journal Control and Optimization 31(12): 1245-1266. | Zbl 0785.93020

[015] Mincheko, L. and Sirotko, S. (2002). Controllability of non-smooth discrete systems with delay, Optimization 51(1): 161-174. | Zbl 1031.93035

[016] Murphey, T. and Burdick, J. (2002). Nonsmooth controllability theory and an example, 41st IEEE Conference on Decision and Control, Las Vegas, NV, USA, pp. 370-376.

[017] Nordin, M. and Gutman, P.O. (2002). Controlling mechanical systems with backlash-a survey, Automatica 38(4): 1633-1649. | Zbl 1030.70013

[018] Qi, L. and Sun, J. (1993). A nonsmooth version of Newton's method, Mathematical Programming 58(3): 353-367. | Zbl 0780.90090

[019] Rockafellar, R.T. and Wets, R. J.B. (1998). Variational Analysis, Springer, Berlin. | Zbl 0888.49001

[020] Sontag, E. (1979). On the observability of polynomial systems, I: Finite-time problems, SIAM Journal of Control and Optimization 17(1): 139-151. | Zbl 0409.93013

[021] Sussmann, H. (1979). Single-input observability of continuous-time systems, Mathematical Systems Theory 12(3): 371-393. | Zbl 0422.93019

[022] van der Schaft, A.J. (1982). Observability and controllability for smooth nonlinear systems, SIAM Journal of Control and Optimization 20(3): 338-354. | Zbl 0482.93039

[023] Zhirabok, A. and Shumsky, A. (2012). An approach to the analysis of observability and controllability in nonlinear systems via linear methods, International Journal of Applied Mathematics and Computer Science 22(3): 507-522, DOI: 10.2478/v10006-012-0038-1. | Zbl 1302.93048