A modified van der Pol equation with delay in a description of the heart action
Beata Zduniak ; Marek Bodnar ; Urszula Foryś
International Journal of Applied Mathematics and Computer Science, Tome 24 (2014), p. 853-863 / Harvested from The Polish Digital Mathematics Library

In this paper, a modified van der Pol equation is considered as a description of the heart action. This model has a number of interesting properties allowing reconstruction of phenomena observed in physiological experiments as well as in Holter electrocardiographic recordings. Our aim is to study periodic solutions of the modified van der Pol equation and take into consideration the influence of feedback and delay which occur in the normal heart action mode as well as in pathological modes. Usage of certain values for feedback and delay parameters allows simulating the heart action when an accessory conducting pathway is present (Wolff-Parkinson-White syndrome).

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:271886
@article{bwmeta1.element.bwnjournal-article-amcv24i4p853bwm,
     author = {Beata Zduniak and Marek Bodnar and Urszula Fory\'s},
     title = {A modified van der Pol equation with delay in a description of the heart action},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {24},
     year = {2014},
     pages = {853-863},
     zbl = {1309.93076},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv24i4p853bwm}
}
Beata Zduniak; Marek Bodnar; Urszula Foryś. A modified van der Pol equation with delay in a description of the heart action. International Journal of Applied Mathematics and Computer Science, Tome 24 (2014) pp. 853-863. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv24i4p853bwm/

[000] Atay, F. (1998). Van der Pol's oscillator under delayed feedback, Journal of Sound and Vibration 218(2): 333-339. | Zbl 1235.70142

[001] Bielczyk, N., Bodnar, M. and Foryś, U. (2012). Delay can stabilize: Love affairs dynamics, Applied Mathematics and Computation 219(2): 3923-3937. | Zbl 1311.91161

[002] Cooke, K. and van den Driessche, P. (1986). On zeroes of some transcendental equations, Funkcialaj Ekvacioj 29(2): 77-90. | Zbl 0603.34069

[003] Erneux, T. and Grasman, J. (2008). Limit cycle oscillators subject to a delayed feedback, Physical Review E 78(2): 026209-1-8.

[004] Foryś, U. (2004). Biological delay systems and the Mikhailov criterion of stability, Journal of Biological Systems 12(1): 45-60. | Zbl 1101.92001

[005] Giacomin, H. and Neukirch, S. (1997). Number of limit cycles of the Lienard equation, Physical Review E 56(3809): 3809-3813.

[006] Grudziński, K. (2007). Modeling the Electrical Activity of the Heart Conduction, Ph.D. thesis, Warsaw University of Technology, Warsaw.

[007] Hale, J. and Lunel, S. (1993). Introduction to Functional Differential Equations, Springer-Verlag, New York, NY. | Zbl 0787.34002

[008] Jiang, W. and Wei, J. (2008). Bifurcation analysis in van der Pol's oscillator with delayed feedback, Journal of Computational and Applied Mathematics 213(2): 604-615. | Zbl 05254086

[009] Johnson, L. (1997). Essential Medical Physiology, Lippincott Williams and Wilkins, London.

[010] Kaplan, D. and Glass, L. (1995). Understanding Nonlinear Dynamics, Springer, New York, NY. | Zbl 0823.34002

[011] Liu, Y., Yang, R., Lu. J. and Cai, X. (2013). Stability analysis of high-order Hopfield-type neural networks based on a new impulsive differential inequality, International Journal of Applied Mathematics and Computer Science 23(1): 201-211, DOI: 10.2478/amcs-2013-0016. | Zbl 1293.93634

[012] Maccari, A. (2001). The response of a parametrically excited van der Pol oscillator to a time delay state feedback, Nonlinear Dynamics 26(2): 105-119. | Zbl 1018.93015

[013] Palit, A. and Datta, D.P. (2010). On a finite number of limit cycles in a Lienard system, International Journal of Pure and Applied Mathematics 59: 469-488. | Zbl 1198.34046

[014] Reddy, R.D., Sen, A. and Johnston, G. (2000). Experimental evidence of time-delay-induced death in coupled limit-cycle oscillators, Physical Review Letters 85(3381): 3381-3384.

[015] Xu, J. and Chung, K. (2003). Effects of time delayed position feedback on a van der Pol-Duffing oscillator, Physica D 180(1): 17-39. | Zbl 1024.37028

[016] Yu, W. and Cao, J. (2005). Hopf bifurcation and stability of periodic solutions for van der Pol equation with time delay, Nonlinear Analysis 62: 141-165. | Zbl 1138.34348

[017] Żebrowski, J., Kuklik, P. and Baranowski, R. (2008). Relaxation oscillations in the atrium-a model, Proceedings of the 5th Conference of the European Study Group on Cardiovascular Oscillations, Parma, Italy, pp. 04:16-04:19.

[018] Zhou, X., Jiang, M. and Cai, X. (2011). Hopf bifurcation analysis for the van der Pol equation with discrete and distributed delays, Discrete Dynamics in Nature and Society, 2011: 1-8, Article ID: 569141. | Zbl 1218.34066