On an infinite dimensional linear-quadratic problem with fixed endpoints: the continuity question
K. Maciej Przyłuski
International Journal of Applied Mathematics and Computer Science, Tome 24 (2014), p. 723-733 / Harvested from The Polish Digital Mathematics Library

In a Hilbert space setting, necessary and sufficient conditions for the minimum norm solution u to the equation Su = Rz to be continuously dependent on z are given. These conditions are used to study the continuity of minimum energy and linear-quadratic control problems for infinite dimensional linear systems with fixed endpoints.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:271896
@article{bwmeta1.element.bwnjournal-article-amcv24i4p723bwm,
     author = {K. Maciej Przy\l uski},
     title = {On an infinite dimensional linear-quadratic problem with fixed endpoints: the continuity question},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {24},
     year = {2014},
     pages = {723-733},
     zbl = {1309.49030},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv24i4p723bwm}
}
K. Maciej Przyłuski. On an infinite dimensional linear-quadratic problem with fixed endpoints: the continuity question. International Journal of Applied Mathematics and Computer Science, Tome 24 (2014) pp. 723-733. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv24i4p723bwm/

[000] Athans, M. (1971). The role and use of the stochastic linear-quadratic-Gaussian problem in control system design, IEEE Transactions on Automatic Control, AC16(6): 529-552.

[001] Aubin, J.-P. (2000). Applied Functional Analysis, Wiley, New York, NY.

[002] Balakrishnan, A.V. (1981). Applied Functional Analysis, Springer, New York, NY. | Zbl 0459.46014

[003] Brockett, R.F. (1970). Finite-Dimensional Linear Systems, Wiley, New York, NY. | Zbl 0216.27401

[004] Chow, G.P. (1976). Analysis and Control of Dynamic Economic Systems, Wiley, New York, NY.

[005] Corless, M.J. and Frazho, A.E. (2003). Linear Systems and Control. An Operator Perspective, Marcel Dekker, New York, NY. | Zbl 1050.93001

[006] Curtain, R.F. (1984). Linear-quadratic control problem with fixed endpoints in infinite dimensions, Journal of Optimization Theory and Its Applications 44(1): 55-74. | Zbl 0527.93037

[007] Curtain, R.F. and Pritchard A.J. (1978). Infinite-Dimensional Linear Systems Theory, Springer, Berlin. | Zbl 0389.93001

[008] Curtain, R.F. and Zwart H. (1995). An Introduction to InfiniteDimensional Linear Systems Theory, Springer, New York, NY. | Zbl 0839.93001

[009] Douglas, R.G. (1966). On majorization, factorization, and range inclusion of operators on Hilbert space, Proceedings of the American Mathematical Society 18(2): 413-415. | Zbl 0146.12503

[010] Emirsajłow, Z. (1989). Feedback control in LQCP with a terminal inequality constraint, Journal of Optimization Theory and Applications 62(3): 387-403. | Zbl 0654.93035

[011] Evans, L.C. (2010). Partial Differential Equations, American Mathematical Society, Providence RI. | Zbl 1194.35001

[012] Federico, S. (2011). A stochastic control problem with delay arising in a pension fund model, Finance and Stochastics 15(3): 421-459. | Zbl 1302.93238

[013] Fuhrmann, P.A. (1972). On weak and strong reachability and controllability of infinite-dimensional linear systems, Journal of Optimization Theory and Its Applications 9(2): 77-89. | Zbl 0215.30203

[014] Kandilakis, D. and Papageorgiou, N.S. (1992). Evolution inclusions of the subdifferential type depending on a parameter, Commentationes Mathematicae Universitatis Carolinae 33(3): 437-449. | Zbl 0770.34016

[015] Kendrick, D.A. (1981). Stochastic Control for Economic Models, McGraw-Hill, New York, NY. | Zbl 0478.93003

[016] Kobayashi, T. (1978). Some remarks on controllability for distributed parameter systems, SIAM Journal on Control and Optimization 16(5): 733-742. | Zbl 0408.35013

[017] Laurent, P.-J. (1972). Approximation et Optimisation, Hermann, Paris. | Zbl 0238.90058

[018] Ljungqvist, L. and Sargent, T.J. (2004). Recursive Macroeconomic Theory, MIT Press, Cambridge, MA.

[019] Luenberger, D.G. (1969). Optimization by Vector Space Methods, Wiley, New York, NY. | Zbl 0176.12701

[020] Papageorgiou, N.S. (1991). On the dependence of the solutions and optimal solutions of control problems on the control constraint set, Journal of Mathematical Analysis and Applications 158(2): 427-447. | Zbl 0741.49003

[021] Porter, W.A. (1966). Modern Foundations of System Engineering, Macmillan, New York, NY.

[022] Przyłuski, K.M. (1981). Remarks on continuous dependence of an optimal control on parameters, in O. Moeschlin and D. Pallaschke (Eds.), Game Theory and Mathematical Economics, North-Holland, Amsterdam, pp. 333-337. | Zbl 0475.49025

[023] Rolewicz, S. (1987). Functional Analysis and Control Theory. Linear Systems, PWN, Warsaw, (in Polish). | Zbl 0633.93002

[024] Sent, E.-M. (1998). The Evolving Rationality of Rational Expectations: An Assessment of Thomas Sargent's Achievements, Cambridge University Press, Cambridge.

[025] Triggiani, R. (1975a). A note on the lack of exact controllability for mild solutions in Banach spaces, SIAM Journal on Control and Optimization 15(3): 407-411. | Zbl 0354.93014

[026] Triggiani, R. (1975b). On the lack of exact controllability for mild solutions in Banach spaces, Journal of Mathematical Analysis and Applications 50(2): 438-446. | Zbl 0305.93013

[027] Triggiani, R. (1976). Extensions of rank conditions for controllability and observability to Banach spaces and unbounded operators, SIAM Journal on Control and Optimization 14(2): 313-338. | Zbl 0326.93003