An optimal sliding mode congestion controller for connection-oriented communication networks with lossy links
Andrzej Bartoszewicz ; Piotr Leśniewski
International Journal of Applied Mathematics and Computer Science, Tome 24 (2014), p. 87-97 / Harvested from The Polish Digital Mathematics Library

A new discrete-time sliding-mode congestion controller for connection-oriented networks is proposed. Packet losses which may occur during the transmission process are explicitly taken into account. Two control laws are presented, each obtained by minimizing a different cost functional. The first one concentrates on the output variable, whereas in the second one the whole state vector is considered. Weighting factors for adjusting the influence of the control signal and appropriate (state or output) errors are incorporated in both the functionals. The asymptotic stability of the closed-loop system is proved, and the conditions for 100% bottleneck node bandwidth utilization are derived. The performance of the proposed algorithm is verified by computer simulations.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:271875
@article{bwmeta1.element.bwnjournal-article-amcv24i1p87bwm,
     author = {Andrzej Bartoszewicz and Piotr Le\'sniewski},
     title = {An optimal sliding mode congestion controller for connection-oriented communication networks with lossy links},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {24},
     year = {2014},
     pages = {87-97},
     zbl = {1292.93045},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv24i1p87bwm}
}
Andrzej Bartoszewicz; Piotr Leśniewski. An optimal sliding mode congestion controller for connection-oriented communication networks with lossy links. International Journal of Applied Mathematics and Computer Science, Tome 24 (2014) pp. 87-97. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv24i1p87bwm/

[000] Bartoszewicz, A. (2006). Nonlinear flow control strategies for connection-oriented communication networks, IEE Proceedings on Control Theory and Applications (Part D) 153(1): 21-28.

[001] Bartoszewicz, A. and Zuk, J. (2009). Discrete time sliding mode flow controller for multi-source single-bottleneck connection-oriented communication networks, Journal of Vibration and Control 15(11): 1745-1760. | Zbl 1273.93106

[002] Drazenovic, B. (1969). The invariance conditions in variable structure systems, Automatica 5(3): 287-295. | Zbl 0182.48302

[003] Edwards, C., Alwi, H. and Tan, C.P. (2012). Sliding mode methods for fault detection and fault tolerant control with application to aerospace systems, International Journal of Applied Mathematics and Computer Science 22(1): 109-124, DOI: 10.2478/v10006-012-0008-7. | Zbl 1273.93037

[004] Edwards, C. and Spurgeon, S. (1994). On the development of discontinuous observers, International Journal of Control 59(4): 1211-1229. | Zbl 0810.93009

[005] Emelyanov, S.V. (1967). Variable Structure Control System, Nauka, Moscow. | Zbl 0217.58102

[006] Floquet, T., Edwards, C. and Spurgeon, S. (2007). On sliding mode observers for systems with unknown inputs, International Journal of Adaptive Control and Signal Processing 21(8-9): 638-656. | Zbl 1128.93008

[007] Fridman, L., Levant, A. and Davila, J. (2007). Observation of linear systems with unknown inputs via high-order sliding-modes, International Journal of Systems Science 38(10): 773-791. | Zbl 1128.93312

[008] Gao, W., Wang, Y. and Homaifa, A. (1995). Discrete-time variable structure control systems, IEEE Transactions on Industrial Electronics 42(2): 117-122.

[009] Haskara, I., Ozguner, U. and Utkin, V. (1998). On sliding mode observers via equivalent control approach, International Journal of Control 71(6): 1051-1067. | Zbl 0938.93505

[010] Hung, J.Y., Gao, W. and Hung, J.C. (1993). Variable structure control: A survey, IEEE Transactions on Industrial Electronics 40(1): 2-22.

[011] Ignaciuk, P. and Bartoszewicz, A. (2008). Linear quadratic optimal discrete-time sliding-mode controller for connectionoriented communication networks, IEEE Transactions on Industrial Electronics 55(11): 4013-4021.

[012] Ignaciuk, P. and Bartoszewicz, A. (2009). Linear quadratic optimal sliding mode flow control for connection-oriented communication networks, International Journal of Robust and Nonlinear Control 19(4): 442-461. | Zbl 1158.93330

[013] Ignaciuk, P. and Bartoszewicz, A. (2011). Discrete-time slidingmode congestion control in multisource communication networks with time-varying delay, IEEE Transactions on Control Systems Technology 19(4): 852-867.

[014] Ignaciuk, P. and Bartoszewicz, A. (2013). Congestion Control in Data Transmission Networks: Sliding Mode and Other Designs, Springer-Verlag, London. | Zbl 1256.93005

[015] Jin, J., Wang, W. and Palaniswami, M. (2009). A simple framework of utility max-min flow control using sliding mode approach, IEEE Communications Letters 13(5): 360-362.

[016] Jing, Y., He, L., Dimirovski, G. and Zhu, H. (2007). Robust stabilization of state and input delay for active queue management algorithm, Proceedings of the American Control Conference, New York, NY, USA, pp. 3083-3087.

[017] Jing, Y., Yu, N., Kong, Z. and Dimirovski, G. (2008). Active queue management algorithm based on fuzzy sliding model controller, Proceedings of the 17th IFAC World Congress, Seoul, Korea, pp. 6148-6153.

[018] Kwakernaak, H. and Sivan, R. (1972). Linear Optimal Control Systems, Wiley-Interscience, New York, NY. | Zbl 0276.93001

[019] Levant, A. (1993). Sliding order and sliding accuracy in sliding mode control, International Journal of Control 58(6): 1247-1263. | Zbl 0789.93063

[020] Mnasri, C. and Gasmi, M. (2011). LMI-based adaptive fuzzy integral sliding mode control of mismatched uncertain systems, International Journal of Applied Mathematics and Computer Science 21(4): 605-615, DOI: 10.2478/v10006011-0047-5. | Zbl 1283.93064

[021] Pietrabissa, A., Priscoli, F. D., Fiaschetti, A. and Paolo, F. D. (2006). A robust adaptive congestion control for communication networks with time varying delays, Proceedings of the IEEE International Conference on Control Applications, Munich, Germany, pp. 2093-2098.

[022] Sira-Ramirez, H. (1993). On the dynamical sliding mode control of nonlinear systems, International Journal of Control 57(5): 1039-1061. | Zbl 0772.93040

[023] Tomera, M. (2010). Nonlinear controller design of a ship autopilot, International Journal of Applied Mathematics and Computer Science 20(2): 271-280, DOI: 10.2478/v10006010-0020-8. | Zbl 1196.93014

[024] Utkin, V. (1977). Variable structure systems with sliding modes, IEEE Transactions on Automatic Control 22(2): 212-222. | Zbl 0382.93036

[025] Utkin, V. and Shi, J. (1996). Integral sliding mode in systems operating under uncertainty conditions, 35th IEEE Conference on Decision and Control, Kobe, Japan, pp. 4591-4596.

[026] Veluvolu, K.C. and Soh, Y.C. (2009). Discrete-time slidingmode state and unknown input estimations for nonlinear systems, IEEE Transactions on Industrial Electronics 56(9): 3443-3345.

[027] Yan, M., Kolemisevska-Gugulovska, T., Jing, Y. and Dimirovski, G. (2007). Robust discrete-time sliding-mode control algorithm for TCP networks congestion control, Proceedings of TELSIKS, Niš, Serbia, pp. 393-396.

[028] Yang, M., Jing, Y., Dimirovski, G. and Zhang, N. (2007). Stability and performance analysis of a congestion control algorithm for networks, Proceedings of the 46th IEEE Conference on Decision and Control, New Orleans, LA, USA, pp. 4453-4458.

[029] Zhang, N., Yang, M., Jing, Y. and Zhang, S. (2009). Congestion control for DiffServ network using second-order sliding mode control, IEEE Transactions on Industrial Electronics 56(9): 3330-3336.

[030] Zheng, X., Zhang, N., Dimirovski, G. and Jing, Y. (2008). Adaptive sliding mode congestion control for DiffServ network, Proceedings of the 17th IFAC World Congress, Seoul, Korea, pp. 12983-12987.