In this paper the authors raise the issue of automatic discrimination of atherosclerotic plaques within an artery lumen based on numerical and statistical thresholding of Computerized Tomography Angiographic (CTA) images and their advanced dimensioning as a support for preoperative vessel assessment. For the study, a set of tomograms of the aorta, as well as the ilio-femoral and femoral arteries were examined. In each case a sequence of about 130-480 images of the artery cutoff planes were analyzed prior to their segmentation based on morphological image transformation. A crucial step in the staging of atherosclerotic alteration is recognition of the plaque in the CTA image. To solve this problem, statistical and linear fitting methods, including the least-squares approximation by polynomial and spline polynomial functions, as well as the error fitting function were used. Also, new descriptors of atherosclerotic changes, such as the lumen decrease factor, the circumference occupancy factor, and the convex plaque area factor, are proposed as a means of facilitating preoperative vessel examination. Finally, ways to reduce the computational time are discussed. The proposed methods can be very useful for automatic quantification of atherosclerotic changes visualized by CTA imaging.
@article{bwmeta1.element.bwnjournal-article-amcv24i1p33bwm, author = {Tomasz Markiewicz and Miros\l aw Dziekiewicz and Marek Maruszy\'nski and Romana Bogus\l awska-Walecka and Wojciech Koz\l owski}, title = {Recognition of atherosclerotic plaques and their extended dimensioning with computerized tomography angiography imaging}, journal = {International Journal of Applied Mathematics and Computer Science}, volume = {24}, year = {2014}, pages = {33-47}, zbl = {1292.92007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv24i1p33bwm} }
Tomasz Markiewicz; Mirosław Dziekiewicz; Marek Maruszyński; Romana Bogusławska-Walecka; Wojciech Kozłowski. Recognition of atherosclerotic plaques and their extended dimensioning with computerized tomography angiography imaging. International Journal of Applied Mathematics and Computer Science, Tome 24 (2014) pp. 33-47. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv24i1p33bwm/
[000] Adame, I.M., van der Geest, R.J., Wasserman, B.A., Mohamed M.A., Reiber, J.H. and Lelieveldt, B.P. (2004). Automatic segmentation and plaque characterization in atherosclerotic carotid artery MR images, MAGMA 16(5): 227-234.
[001] Andrews, L.C. (1997). Special Functions of Mathematics for Engineers, SPIE Press, Bellingham.
[002] Davies, E.R. (1989). Finding ellipses using the generalised Hough transform, Pattern Recognition Letters 9(2): 87-96.
[003] De Boor, C. (2001). A Practical Guide to Splines (Revised Edition), Springer, New York, NY/Heidelberg. | Zbl 0987.65015
[004] Demirkaya, O., Asyali, M.H. and Sahoo, P.H. (2009). Image Processing with MATLAB: Applications in Medicine and Biology, CRC Press, Boca Raton, FL.
[005] Frąckiewicz, M. and Palus, H. (2011). KHM clustering technique as a segmentation method for endoscopic colour images, International Journal of Applied Mathematics and Computer Science 21(1): 203-209, DOI: 10.2478/v10006-011-0015-0.
[006] Fritsch, F.N. and Carlson, R.E. (1980). Monotone piecewise cubic interpolation, SIAM Journal of Numerical Analysis 17(2): 238-246. | Zbl 0423.65011
[007] Kerwin, W., Xu, D., Liu, F., Saam, T., Underhill, H., Takaya, N., Chu, B., Hatsukami, T. and Yuan, C. (2007). Magnetic resonance imaging of carotid atherosclerosis: Plaque analysis, Topics in Magnetic Resonance Imaging 18(5): 371-378.
[008] Manniesing, R., Velthuis, B., van Leeuwen, M., van der Schaaf, I., van Laar, P. and Niessen, W. (2006). Level set based cerebral vasculatural segmentation and diameter quantification in CT angiography, Medical Image Analysis 10(2): 200-214.
[009] Manniesing, R., Viergever, M. and Niessen, W. (2007). Vessel axis tracking using topology constrained surface evaluation, IEEE Transactions on Medical Imaging 26(3): 309-316.
[010] Manniesing, R., Viergever, M., van der Lugt, A. and Niessen, W. (2008). Cerebral arteries: Fully automated segmentation from CT angiography-a feasibility study, Radiology 247(3): 841-846.
[011] Manniesing, R., Schaap, M., Rozie, S., Hameeteman, R., Vukadinovic, D., van der Lugt, A. and Niessen, W. (2010). Robust CTA lumen segmentation of the atherosclerotic carotid artery bifurcation in a large patient population, Medical Image Analysis 14(6): 759-769.
[012] Piegl, L. and Tille, W. (1997). The Nurbs Book, Springer, New York, NY/Heidelberg.
[013] Renard, F. and Yang, Y. (2008). Image analysis for detection of coronary artery soft plaques in MDCT images, 5th IEEE International Symposium on Biomedical Imaging (ISBI '08), Paris, France, pp. 25-28.
[014] Soille, P. (2003). Morphological Image Analysis, Principles and Applications (Second Edition), Springer, Berlin. | Zbl 1012.68212
[015] Stoer, J. and Bulirsch, R. (2010). Introduction to Numerical Analysis, Springer, New York, NY/Heidelberg. | Zbl 0771.65002
[016] Vukadinovic, D., Rozie, S., van Gils, M., van Walsum, T., Manniesing, R., van der Lugt, A. and Niessen, W.J. (2012). Automated versus manual segmentation of atherosclerotic caroid plaque volume and components in CTA: Associations with cardiovascular risk factors, International Journal of Cardiovascular Imaging 28(4): 877-887.
[017] Vukadinovic, D., van Walsum, T., Manniesing, R., Rozie, S., Hameeteman, R., de Weert, T., van der Lugt, A. and Niessen, W. (2010). Segmentation of the outer vessel wall of the common carotid artery in CTA, IEEE Transactions on Medical Imaging 29(1): 65-76.
[018] Yang, F., Holzapfel, G., Schulze-Bauer, C., Stollberger, R., Thedens, D., Bolinger, L., Stolpen, A. and Sonka, M. (2003). Segmentation of wall and plaque in in vitro vascular MR images, International Journal of Cardiovascular Imaging 19(5): 419-428.
[019] Yang, Y., Huang, S. and Rao, N. (2008). An automatic hybrid method for retinal blood vessel extraction, International Journal of Applied Mathematics and Computer Science 18(3): 399-407, DOI: 10.2478/v10006-008-0036-5. | Zbl 1176.92030