Considered is the control and stabilizability of a slowly rotating non-homogeneous Timoshenko beam with the aid of a torque. It turns out that the beam is (approximately) controllable with the aid of the torque if and only if it is (approximately) controllable. However, the controllability problem appears to be a side-effect while studying the stabilizability. To build a stabilizing control one needs to go through the methods of correcting the operators with functionals so that they have finally the appropriate form and the results on C⁰-continuous semigroups may be applied.
@article{bwmeta1.element.bwnjournal-article-amcv23z3p587bwm, author = {Grigory M. Sklyar and Grzegorz Szkibiel}, title = {Controlling a non-homogeneous Timoshenko beam with the aid of the torque}, journal = {International Journal of Applied Mathematics and Computer Science}, volume = {23}, year = {2013}, pages = {587-598}, zbl = {1279.93023}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv23z3p587bwm} }
Grigory M. Sklyar; Grzegorz Szkibiel. Controlling a non-homogeneous Timoshenko beam with the aid of the torque. International Journal of Applied Mathematics and Computer Science, Tome 23 (2013) pp. 587-598. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv23z3p587bwm/
[000] Avdonin, S.A. and Ivanov, S.A. (1995). Families of Exponentials, Cambridge University Press, Cambridge. | Zbl 0866.93001
[001] Avdonin, S. and Moran, W. (2001). Ingham-type inequalities and Riesz bases of divided differences, International Journal of Applied Mathematics Computer Science 11(4): 803-820. | Zbl 1031.93098
[002] Kaczorek, T. (2012). Existence and determination of the set of Metzler matrices for given stable polynomials, International Journal of Applied Mathematics Computer Science 22(2): 389-399, DOI: 10.2478/v10006-012-0029-2. | Zbl 1283.93070
[003] Kato, T. (1966). Perturbation Theory for Linear Operators, Springer-Verlag, Berlin. | Zbl 0148.12601
[004] Krabs, W. and Sklyar, G.M. (2002). On Controllability of Linear Vibrations, Nova Science Publishers Inc., Huntington, NY. | Zbl 1028.93005
[005] Levin, B. (1961). On Riesz bases of exponential in l² , Zapiski Matematicheskogo Otdieleniya Fiziko-matematicheskogo Fakul'teta Kharkovskogo Universiteta 27(4): 39-48.
[006] Ostalczyk, P. (2012). Equivalent descriptions of a discrete-time fractional-order linear system and its stability domains, International Journal of Applied Mathematics Computer Science 22(3): 533-538, DOI: 10.2478/v10006-012-0040-7. | Zbl 1302.93140
[007] Paley, R.E.A.C. and Wiener, N. (1934). Fourier Transforms in the Complex Domain, American Mathematical Society, Providence, RI. | Zbl 0011.01601
[008] Respondek, J.S. (2008). Approximate controllability of infinite dimensional systems of the n-th order, International Journal of Applied Mathematics Computer Science 18(2): 199-212, DOI: 10.2478/v10006-008-0018-7. | Zbl 1234.93019
[009] Russell, D.L. (1967). Non-harmonic Fourier series in control theory of distributed parameter system, Journal of Mathematical Analysis and Applications (18): 542-560. | Zbl 0158.10201
[010] Sklyar, G.M. and Rezounenko, A.V. (2003). Strong asymptotic stability and constructing of stabilizing control, Matematitcheskaja Fizika, Analiz i Geometria 10(4): 569-582. | Zbl 1066.93047
[011] Sklyar, G.M. and Szkibiel, G. (2007). Spectral properties of non-homogeneous Timoshenko beam and its controllability, Mekhanika Tverdogo Tela (37): 175-183. | Zbl 1131.74034
[012] Sklyar, G.M. and Szkibiel, G. (2008a). Controllability from rest to arbitrary position of non-homogeneous Timoshenko beam, Matematitcheskij Analiz i Geometria 4(2): 305-318. | Zbl 1170.93011
[013] Sklyar, G.M. and Szkibiel, G. (2008b). Spectral properties of non-homogeneous Timoshenko beam and its rest to rest controllability, Journal of Mathematical Analysis and Applications (338): 1054-1069. | Zbl 1131.74034
[014] Sklyar, G.M. and Szkibiel, G. (2012). Approximation of extremal solution of non-Fourier moment problem and optimal control for non-homogeneous vibrating systems, Journal of Mathematical Analysis and Applications (387): 241-250. | Zbl 1231.49029
[015] Zerrik, E., Larhrissi, R. and Bourray, H. (2007). An output controllability problem for semilinear distributed hyperbolic systems, International Journal of Applied Mathematics Computer Science 17(4): 437-448, DOI: 10.2478/v10006-007-0035-y. | Zbl 1234.93023