The paper investigates the sensitivity of safe ship control to inaccurate data from the ARPA anti-collision radar system and to changes in the process control parameters. The system structure of safe ship control in collision situations and computer support programmes exploring information from the ARPA anti-collision radar are presented. Sensitivity characteristics of the multistage positional non-cooperative and cooperative game and kinematics optimization control algorithms are determined through examples of navigational situations with restricted visibility at sea.
@article{bwmeta1.element.bwnjournal-article-amcv23z2p439bwm, author = {J\'ozef Lisowski}, title = {Sensitivity of computer support game algorithms of safe ship control}, journal = {International Journal of Applied Mathematics and Computer Science}, volume = {23}, year = {2013}, pages = {439-446}, zbl = {06246501}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv23z2p439bwm} }
Józef Lisowski. Sensitivity of computer support game algorithms of safe ship control. International Journal of Applied Mathematics and Computer Science, Tome 23 (2013) pp. 439-446. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv23z2p439bwm/
[000] Baba, N. and Jain, L. (2001). Computational Intelligence in Games, Physica-Verlag, New York, NY. | Zbl 0972.91001
[001] Basar, T. and Olsder, G. (1982). Dynamic Non-Cooperative Game Theory, Academic Press, New York, NY. | Zbl 0479.90085
[002] Bist, D. (2000). Safety and Security at Sea, Butter Heinemann, Oxford/New Delhi.
[003] Błaszczyk, J., Karbowski, A. and Malinowski, K. (2007). Object library of algorithms for dynamic optimization problems: Benchmarking SQP and nonlinear interior point methods, International Journal of Applied Mathematics and Computer Science 17(4): 515-537, DOI: 10.2478/v10006-007-0043-y. | Zbl 1234.90022
[004] Bole, A., Dineley, B. and Wall, A. (2006). Radar and ARPA Manual, Elsevier, Amsterdam/Tokyo.
[005] Cahill, R. (2002). Collisions and Their Causes, Nautical Institute, London.
[006] Clarke, D. (2003). The foundations of steering and manoeuvering, Proceedings of the IFAC Conference on Manoeuvering and Control Marine Crafts, Girona, Spain, pp. 124-132.
[007] Cockcroft, A. and Lameijer, J. (2006). The Collision Avoidance Rules, Elsevier, Amsterdam/Tokyo.
[008] Engwerda, J. (2005). LQ Dynamic Optimization and Differential Games, John Wiley & Sons, West Sussex.
[009] Fadali, M. and Visioli, A. (2009). Digital Control Engineering, Elsevier, Amsterdam/Tokyo.
[010] Fang, M. and Luo, J. (2005). The nonlinear hydrodynamic model for simulating a ship steering in waves with autopilot system, Ocean Engineering 32(11): 1486-1502.
[011] Findeisen, W., Szymanowski, J. and Wierzbicki, A. (1980). The Nonlinear Hydrodynamic Model for Simulating a Ship Steering in Waves with Autopilot System, Polish Scientific Publishers, Warsaw.
[012] Fletcher, R. (1987). Practical Methods of Optimization, John Wiley & Sons, New York, NY. | Zbl 0905.65002
[013] Fossen, T. (2011). Marine Craft Hydrodynamics and Motion Control, Wiley, Trondheim.
[014] Gałuszka, A. and Świerniak, A. (2005). Non-cooperative game approach to multi-robot planning, International Journal of Applied Mathematics and Comuter Science 15(3): 359-367. | Zbl 1169.91327
[015] Gluver, H. and Olsen, D. (1998). Ship Collision Analysis, A.A. Balkema, Rotterdam/Brookfield.
[016] Isaacs, R. (1965). Differential Games, John Wiley & Sons, New York, NY. | Zbl 0125.38001
[017] Isil-Bozma, H. and Koditschek, D. (2001). Assembly as a non-cooperative game of its pieces: Analysis of ID sphere assemblies, Robotica 19(3): 93-108.
[018] Keesman, K. (2011). System Identification, Springer, New York, NY. | Zbl 1230.93001
[019] Landau, I., Lozano, R., Saadand, M. and Karimi, A. (2011). Adaptive Control, Springer, London/New York, NY.
[020] Lisowski, J. (2007). The dynamic game models of safe navigation, in A. Weintrit (Ed.), Marine Navigation and Safety of Sea Transportation, Gdynia Maritime University, Gdynia, pp. 23-30.
[021] Lisowski, J. (2009). Sensitivity of safe game ship control on base information from ARPA radar, in G. Kouemou (Ed.), Radar Technology, In-Teh, Vukovar, pp. 61-86.
[022] Lisowski, J. (2010). Optimization decision support system for safe ship control, in C.A. Brebbia (Ed.), Risk Analysis, WIT Press, Southampton/Boston, MA, pp. 259-272.
[023] Lisowski, J. (2011). The sensitivity of safe ship control in restricted visibility at sea, in A. Weintrit (Ed.), Marine Navigation and Safety of Sea Transportation, Gdynia Maritime University, Gdynia, pp. 75-84.
[024] Luus, R. (2000). Iterative Dynamic Programming, CRC Press, Boca Raton, FL. | Zbl 1070.49001
[025] Mehrotra, S. (1992). On the implementation of a primal-dual interior point method, SIAM Journal on Optimization 2(4): 575-601. | Zbl 0773.90047
[026] Mesterton-Gibbons, M. (2001). An Introduction to Game Theoretic Modeling, American Mathematical Society, Providence, RI. | Zbl 0967.91002
[027] Millington, I. and Funge, J. (2009). Artificial Intelligence for Games, Elsevier, Amsterdam/Tokyo.
[028] Modarres, M. (2006). Risk Analysis in Engineering, Taylor & Francis Group, Boca Raton, FL. | Zbl 1088.62140
[029] Nisan, N., Roughgarden, T., Tardos, E. and Vazirani, V. (2007). Algorithmic Game Theory, Cambridge University Press, New York, NY. | Zbl 1130.91005
[030] Osborne, M. (2004). Algorithmic Game Theory, Oxford University Press, New York, NY.
[031] Pantoja, J. (1998). Differential dynamic programming and Newton's method, International Journal of Control 47(5): 1539-1553.
[032] Perez, T. (2005). Ship Motion Control, Springer, London.
[033] Pietrzykowski, Z. (2011). The Navigational Decision Support System on a Sea-Going Vessel, Maritime University, Szczecin.
[034] Straffin, P. (2001). Game Theory and Strategy, Scholar, Warsaw. | Zbl 0948.91502
[035] Szlapczynski, R. and Smierzchalski, R. (2009). Supporting navigator's decisions by visualizing ship collision risk, Polish Maritime Research 1(59): 83-88.
[036] Szynkiewicz, W. and Błaszczyk, J. (2011). Optimization-based approach to path planning for closed chain robot systems, International Journal of Applied Mathematics and Computer Science 21(4): 659-670, DOI: 10.2478/v10006-011-0052-8. | Zbl 1283.93206
[037] Tomera, M. (2010). Nonlinear controller design of a ship autopilot, International Journal of Applied Mathematics and Computer Science 20(2): 271-280, DOI: 10.2478/v10006-010-0020-8. | Zbl 1196.93014
[038] Tomera, M. and Smierzchalski, R. (2006). Sliding controller for ship course steering, Proceedings of the IFAC Conference on Manoeuvering and Control of Marine Crafts, Lisbon, Portugal, pp. 211-219.
[039] Wierzbicki, A. (1984). Models and Sensitivity of Control Systems, Elsevier, Amsterdam. | Zbl 0667.93026
[040] Witkowska, A., Tomera, M. and Smierzchalski, R. (2007). A backstepping approach to ship course control, International Journal of Applied Mathematics and Computer Science 17(1): 73-85, DOI: 10.2478/v10006-007-0007-2. | Zbl 1122.93351
[041] Zio, E. (2009). Computational Methods for Reliability and Risk Analysis, Series on Quality, Reliability and Engineering Statistics, Word Scientific, Chennai. | Zbl 1291.62019