An unconditionally stable nonstandard finite difference method applied to a mathematical model of HIV infection
Hasim A. Obaid ; Rachid Ouifki ; Kailash C. Patidar
International Journal of Applied Mathematics and Computer Science, Tome 23 (2013), p. 357-372 / Harvested from The Polish Digital Mathematics Library

We formulate and analyze an unconditionally stable nonstandard finite difference method for a mathematical model of HIV transmission dynamics. The dynamics of this model are studied using the qualitative theory of dynamical systems. These qualitative features of the continuous model are preserved by the numerical method that we propose in this paper. This method also preserves the positivity of the solution, which is one of the essential requirements when modeling epidemic diseases. Robust numerical results confirming theoretical investigations are provided. Comparisons are also made with the other conventional approaches that are routinely used for such problems.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:256684
@article{bwmeta1.element.bwnjournal-article-amcv23z2p357bwm,
     author = {Hasim A. Obaid and Rachid Ouifki and Kailash C. Patidar},
     title = {An unconditionally stable nonstandard finite difference method applied to a mathematical model of HIV infection},
     journal = {International Journal of Applied Mathematics and Computer Science},
     volume = {23},
     year = {2013},
     pages = {357-372},
     zbl = {1282.93142},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-amcv23z2p357bwm}
}
Hasim A. Obaid; Rachid Ouifki; Kailash C. Patidar. An unconditionally stable nonstandard finite difference method applied to a mathematical model of HIV infection. International Journal of Applied Mathematics and Computer Science, Tome 23 (2013) pp. 357-372. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-amcv23z2p357bwm/

[000] Allen, L. (2007). An Introduction to Mathematical Biology, Prentice-Hall, Englewood Cliffs, NJ.

[001] Anguelov, R., Lubuma, J.-S. and Shillor, M. (2009). Dynamically consistent nonstandard finite difference schemes for continuous dynamical systems, Discrete and Continuous Dynamical Systems: Supplement 61: 34-43. | Zbl 1187.65082

[002] Arenas, A., No, J.M. and Cortés, J. (2008). Nonstandard numerical method for a mathematical model of RSV epidemiological transmission, Computers and Mathematics with Applications 56(3): 670-678. | Zbl 1155.92337

[003] Bacaer, N., Ouifki, R., Pretorius, C., Wood, R. and Williams, B. (2008). Modeling the joint epidemics of TB and HIV in a South African township, Journal of Mathematical Biology 57(4): 557-593. | Zbl 1194.92052

[004] Brauer, F. and Castillo-Chavez, C. (2001). Mathematical Models in Population Biology and Epidemiology, Springer-Verlag, New York, NY. | Zbl 0967.92015

[005] Dimitrov, D. and Kojouharov, H. (2005). Nonstandard finite-difference schemes for general two-dimensional autonomous dynamical systems, Applied Mathematics Letters 18(7): 769-774. | Zbl 1122.65067

[006] Dimitrov, D. and Kojouharov, H. (2006). Positive and elementary stable nonstandard numerical methods with applications to predator-prey models, Journal of Computational and Applied Mathematics 189(1): 98-108. | Zbl 1087.65068

[007] Dimitrov, D. and Kojouharov, H. (2007). Stability-preserving finite-difference methods for general multi-dimensional autonomous dynamical systems, International Journal of Numerical Analysis Modeling 4(2): 280-290. | Zbl 1113.37065

[008] Karcz-Dulęba, I. (2004). Asymptotic behaviour of a discrete dynamical system generated by a simple evolutionary process, International Journal of Applied Mathematics and Computer Science 14(1): 79-90. | Zbl 1171.92333

[009] Gumel, A., McCluskey, C. and van den Driessche, P. (2006). Mathematical study of a staged-progression HIV model with imperfect vaccine, Bulletin of Mathematical Biology 68(8): 2105-2128. | Zbl 1296.92124

[010] Gumel, A., Patidar, K. and Spiteri, R. (2005). Asymptotically consistent nonstandard finite difference methods for solving mathematical models arising in population biology, in R. Mickens (Ed.), Applications of Nonstandard Finite Difference Schemes, World Scientific, Singapore, pp. 385-421. | Zbl 1086.65080

[011] Ibijola, E., Ogunrinde, R. and Ade-Ibijola, O. (2008). On the theory and applications of new nonstandard finite difference methods for the solution of initial value problems in ordinary differential equations, Advances in Natural and Applied Sciences 2(3): 214-224.

[012] Jódar, L., Villanueva, R., Arenas, A. and González, G. (2008). Nonstandard numerical methods for a mathematical model for influenza disease, Mathematics and Computers in Simulation 79(3): 622-633. | Zbl 1151.92018

[013] Kadalbajoo, M., Patidar, K. and Sharma, K. (2006). ε-uniformly convergent fitted methods for the numerical solution of the problems arising from singularly perturbed general DDEs, Applied Mathematics and Computation 182(1): 119-139. | Zbl 1109.65067

[014] Kouche, M. and Ainseba, B. (2010). A mathematical model of HIV-1 infection including the saturation effect of healthy cell proliferation, International Journal of Applied Mathematics and Computer Science 20(3): 601-612, DOI: 10.2478/v10006-010-0045-z. | Zbl 1211.93010

[015] Lubuma, J.-S. and Patidar, K. (2006). Uniformly convergent non-standard finite difference methods for self-adjoint singular perturbation problems, Journal of Computational and Applied Mathematics 191(2): 229-238. | Zbl 1091.65079

[016] Lubuma, J.-S. and Patidar, K. (2007a). Non-standard methods for singularly perturbed problems possessing oscillatory/layer solutions, Applied Mathematics and Computation 187(2): 1147-1160. | Zbl 1128.65060

[017] Lubuma, J.-S. and Patidar, K. (2007b). Solving singularly perturbed advection reaction equation via non-standard finite difference methods, Mathematical Methods in the Applied Sciences 30(14): 1627-1637. | Zbl 1132.35008

[018] Lubuma, J.-S. and Patidar, K. (2007c). ε-uniform non-standard finite difference methods for singularly perturbed nonlinear boundary value problems, Advances in Mathematical Sciences and Applications 17(2): 651-665. | Zbl 1136.65074

[019] Mickens, R. (2007). Calculation of denominator functions for nonstandard finite difference schemes for differential equations satisfying a positivity condition, Numerical Methods for Partial Differential Equations 23(3): 672-691. | Zbl 1114.65094

[020] Mickens, R. and Ramadhani, I. (1994). Finite-difference schemes having the correct linear stability properties for all finite step-sizes III, Computer in Mathematics with Applications 27(4): 77-84. | Zbl 0795.65040

[021] Mickens, R. and Smith, A. (1990). Finite difference models of ordinary differential equations: Influence of denominator functions, Journal of the Franklin Institute 327(1): 143-145. | Zbl 0695.93063

[022] Munyakazi, J. and Patidar, K. (2010). Higher order numerical methods for singularly perturbed elliptic problems, Neural, Parallel & Scientific Computations 18(1): 75-88. | Zbl 1214.65055

[023] Patidar, K. (2005). On the use of nonstandard finite difference methods, Journal of Difference Equations and Applications 11(8): 735-758. | Zbl 1073.65545

[024] Patidar, K. (2008). A robust fitted operator finite difference method for a two-parameter singular perturbation problem, Journal of Difference Equations and Applications 14(12): 1197-1214. | Zbl 1160.35322

[025] Patidar, K. and Sharma, K. (2006a). Uniformly convergent nonstandard finite difference methods for singularly perturbed differential difference equations with delay and advance, International Journal for Numerical Methods in Engineering 66(2): 272-296. | Zbl 1123.65078

[026] Patidar, K. and Sharma, K. (2006b). ε-uniformly convergent non-standard finite difference methods for singularly perturbed differential difference equations with small delay, Applied Mathematics and Computation 175(1): 864-890. | Zbl 1096.65071

[027] Rauh, A., Brill, M. and Günther, C. (2009). A novel interval arithmetic approach for solving differential-algebraic equations with ValEncIA-IVP, International Journal of Applied Mathematics and Computer Science 19(3): 381-397, DOI: 10.2478/v10006-009-0032-4. | Zbl 1300.93075

[028] Rauh, A., Minisini, J. and Hofer, E.P. (2009). Verification techniques for sensitivity analysis and design of controllers for nonlinear dynamic systems with uncertainties, International Journal of Applied Mathematics and Computer Science 19(3): 425-439, DOI: 10.2478/v10006-009-0035-1. | Zbl 1300.93060

[029] Villanueva, R., Arenas, A. and Gonzalez-Parra, G. (2008). A nonstandard dynamically consistent numerical scheme applied to obesity dynamics, Journal of Applied Mathematics, Article ID 640154, DOI: 10.1155/2008/640154. | Zbl 1157.92028

[030] Xu, C., Liao, M. and He, X. (2011). Stability and Hopf bifurcation analysis for a Lotka-Volterra predator-prey model with two delays, International Journal of Applied Mathematics and Computer Science 21(1): 97-107, DOI: 10.2478/v10006-011-0007-0. | Zbl 1231.34151

[031] Zhai, G. and Michel, A.M. (2004). Generalized practical stability analysis of discontinuous dynamical systems, International Journal of Applied Mathematics and Computer Science 14(1): 5-12. | Zbl 1171.34328